首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gold nanoparticles (AuNPs) with different diameters (from 4 up to 10 nm) were immobilized within a amine-alcohol-silicate matrix [AA(600)] by mixing a preformed Au nanoparticle colloidal solution with the precursors of amine-alcohol-silicate, prior to the sol–gel transition. The organic–inorganic hybrid (OIH) nanocomposites were synthetized by sol–gel method by reaction of amino-functionalized polyether and a siloxane functionalized with a terminal epoxy group. The obtained homogeneous, high transparent and stable materials exhibit enhanced optical and electrical properties derived from plasmonic effects associated with the size and form of the nanoparticle dopants which show to be preserved during the synthesis steps. Performed electrochemical impedance spectroscopy revealed that OIH gels doped with AuNPs exhibit low conductivity that shows to be slightly dependent on dispersed Au particle sizes. The characterization of this materials by current–voltage (I–V) measurements shows that these materials exhibit an electrical stability within an range of applied potential of about 5 V and suggests that charge transfer mechanism is strongly dependent on the potential applied across the OIH gel as observed by testing different charge transfer models: space-charge-limited current, Poole–Frenkel, Schottky emission and hopping conduction or the Schottky-Simmons. The results obtained from the characterization the electrochemical properties shows that the produced material to be relevant for the potential application of OIH embedded AuNPs nanocomposites in non-volatile organic memory devices.  相似文献   

2.
A novel open-tubular capillary electrochromatography (OTCEC) column was prepared by immobilizing dodecanethiol gold nanoparticles on prederivatised fused-silica capillary columns with sol-gel technology. 3-Mercaptopropyl-trimethoxysilane (MPTMS) was selected as sol-gel precursor to develop a sol-gel layer on the inner wall of the capillary, prior to assembly of dodecanethiol gold nanoparticles onto the generated sol-gel layer through specific interaction between the gold nanoparticles and surface terminating thiol groups. The electrochromatographic behaviour of the sol-gel gold nanoparticle capillary was compared with a gold nanoparticle capillary prepared via MPTMS surface functionalisation, through variation of the percentage of the organic modifier, pH, and separation voltage. Efficient separation for a "reversed-phase" test mixture of thiourea, naphthalene, and biphenyl and for selected polycyclic aromatic hydrocarbons (PAHs) was obtained on the sol-gel based gold nanoparticle capillaries. OTCEC separations of three selected drug substances (propiophenone, benzoin, and warfarin) were also demonstrated. Scanning electron microscopy was used for the characterization of the sol-gel gold nanoparticle capillary surface. The results confirm that dodecanethiol gold nanoparticles, bound on the sol-gel-based inner layer of fused-silica capillary, can provide sufficient solute-bonded phase interactions for OTCEC with reproducible retention as well as characteristic reversed-phase behaviour.  相似文献   

3.
Poly(methyl methacrylate) (PMMA)/zinc oxide (ZnO) or carbazole polymer (PCEM)/ZnO nanocomposites, which are composed of high molecular weight PMMA or PCEM with narrow molecular weight distributions and ZnO nanoparticles, were successfully prepared by atom transfer radical polymerization (ATRP) initiated by 2-bromo-2-methylpropionyl (BMP) group (ZnBM) introduced onto the ZnO nanoparticle surfaces. Introduction of the BMP group onto the ZnO surfaces was achieved by esterification of OH group of the ZnO surfaces. The chemically attached OH group-having ZnO nanoparticles (ZnHM) were fabricated by sol-gel reaction from zinc acetate dihydrate, followed by treatment of the ZnO nanoparticles with 2-hydroxypropionic acid (HPA). The ZnHM nanoparticles showed one UV absorption and two emission bands: UV emission peak and broad visible emission band, while the ZnBM exhibited broad UV absorption and no emission spectra. The PMMA/ZnO nanocomposites displayed UV absorption and photoluminescent (PL) band with blue emission on the basis of the ZnHM nanoparticles, where the ZnO nanoparticles dispersed homogeneously in the PMMA matrix. The PCEM/ZnO nanocomposites depicted UV emission peak due to the carbazole unit in the UV range, but no visible emission. Thermal properties of the PMMA/ZnO nanocomposites were improved by dispersion of the ZnO nanoparticles into the PMMA, but the PCEM/ZnO nanocomposites showed no improvement of the thermal properties.  相似文献   

4.
In this work, we provide a detailed study of the influence of thermal annealing on submonolayer Au nanoparticle deposited on functionalized surfaces as standalone films and those that are coated with sol-gel NiO and TiO(2) thin films. The systems are characterized through the use of UV-vis absorption, X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and spectroscopic ellipsometry. The surface plasmon resonance peak of the Au nanoparticles was found to red-shift and increase in intensity with increasing surface coverage, an observation that is directly correlated to the complex refractive index properties of Au nanoparticle layers. The standalone Au nanoparticles sinter at 200 °C, and a relationship between the optical properties and the annealing temperature is presented. When overcoated with sol-gel metal oxide films (NiO, TiO(2)), the optical properties of the Au nanoparticles are strongly affected by the metal oxide, resulting in an intense red shift and broadening of the plasmon band; moreover, the temperature-driven sintering is strongly limited by the metal oxide layer. Optical sensing tests for ethanol vapor are presented as one possible application, showing reversible sensing dynamics and confirming the effect of Au nanoparticles in increasing the sensitivity and in providing a wavelength dependent response, thus confirming the potential use of such materials as optical probes.  相似文献   

5.
A functional nanoparticle with light-triggered charge reversal based on a protected amine-bridged polysilsesquioxane was designed. An emulsion- and amine-free sol-gel synthesis was developed to prepare uniform nanospheres. Photolysis of suspensions of these nanoparticles results in a reversal of the ζ potential. This behavior has been used to trigger nanoparticle self-assembly, nanocomposite hydrogel formation, and nanoparticle release, showing the potential of this material in nanoscale manipulation and nanoparticle therapy.  相似文献   

6.
Ferro- and ferrimagnetic nanoparticles are difficult to manipulate in solution as a consequence of the formation of magnetically induced nanoparticle aggregates, which hamper the utility of these particles for applications ranging from data storage to bionanotechnology. Nonmagnetic shells that encapsulate these magnetic particles can reduce the interparticle magnetic interactions and improve the dispersibility of the nanoparticles in solution. A route to create uniform silica shells around individual cobalt ferrite nanoparticles--which uses poly(acrylic acid) to bind to the nanoparticle surface and inhibit nanoparticle aggregation prior to the addition of a silica precursor--was developed. In the absence of the poly(acrylic acid) the cobalt ferrite nanoparticles irreversibly aggregated during the silica shell formation. The thickness of the silica shell around the core-shell nanoparticles could be controlled in order to tune the interparticle magnetic coupling as well as inhibit magnetically induced nanoparticle aggregation. These ferrimagnetic core-silica shell structures form stable dispersion in polar solvents such as EtOH and water, which is critical for enabling technologies that require the assembly or derivatization of ferrimagnetic particles in solution.  相似文献   

7.
The interband transition contributions to the optical properties of silver nanoparticles in fluoropolymer matrices are investigated. For the materials in this study, nanoparticle synthesis within the existing polymer matrix is accomplished using an infusion process that consists of diffusing an organometallic precursor gas into the free volume of the fluoropolymer and decomposing the precursor followed by metal nanoparticle nucleation and growth. The resulting polymer matrix nanocomposite has optical properties that are dominated by the response of the nanoparticles owing to the broadbanded transparency of the fluoropolymer matrix. The optical properties of these composites are compared to Maxwell-Garnett and Mie theory with results indicating that interband transitions excited in the silver nanoparticles affect the optical absorption over a range of frequencies including the surface plasmon resonance. It is shown that calculations of the optical absorption spectrum using published data for the silver dielectric function do not accurately describe the measured material response and that a classical model for bound and free electron behavior can best be used to represent the dielectric function of silver.  相似文献   

8.
A general and facile strategy was developed to coat hydrophilic inorganic nanoparticles directly with mesoporous silica nanoparticles (MSNs). The cationic surfactant of cetyltrimethylammonium bromide (CTAB) was adsorbed to various negatively charged CdTe quantum dots, Fe(3)O(4) nanocrystals or Au nanoparticles, introducing the bilayer of CTAB overcoating with positive charge. The subsequent sol-gel reaction of TEOS with the basic catalyst resulted in uniform nanocomposites. The concentration of CTAB and NH(4)OH in the recipe strongly influenced the number of inorganic nanoparticles in the nanocomposites and the homogeneity of MSNs shell. One dimensional Au nanorods and larger size of solid SiO(2) nanoparticles were also able to coat with MSNs using a similar synthetic procedure. The proposed method was greatly simplified without the help of any mediators or silane coupling agents and excellent mesostructural performance was readily achieved. Compared to the methods known from the literatures for the coating of hydrophobic nanoparticles, this efficient way is especially useful for trapping different hydrophilic nanoparticles with arbitrary sizes and shapes into MSNs. These highly versatile multifunctional nanocomposites, together with the pH-responsible drug release behaviors, non-toxicity to normal cells and ease of uptake into cancer cells, are expected to be utilized as drug delivery system for simultaneous imaging and therapeutic applications.  相似文献   

9.
There is a growing interest in the development of nanocomposites consisting of organic polymers and TiO2 or amorphous SiO2 nanoparticles. These nanoparticles may be released from nanocomposites. There is evidence that amorphous SiO2 and TiO2 nanoparticles can be hazardous. Thus, in the design of nanocomposites with such nanoparticles, hazard reduction extending to the full nanocomposite life cycle would seem a matter to consider. Options for hazard reduction include: changes of nanoparticle surface, structure or composition, better fixation of nanoparticles in nanocomposites, including persistent suppression of oxidative damage to polymers by nanoparticles, and design changes leading to the release of relatively large particles.  相似文献   

10.
采用3-巯基丙基三甲氧基硅烷作为联结剂,成功将单个金纳米粒子包在氧化硅壳中,制得Au@SiO2核壳纳米粒子;该复合纳米粒子形貌呈球形、单分散性较好,金纳米粒子位于氧化硅球的中心,无团聚的金纳米粒子包覆在氧化硅壳中。采用透射电镜(TEM)对样品的形貌进行了表征,通过能量散射X-射线能谱(EDX)分析了目标物的化学成分,并对所得核壳纳米粒子的光谱性质进行了研究。  相似文献   

11.
A new and simple method has been developed to synthesize large quantities of highly monodisperse tetragonal zirconia nanocrystals. In this synthesis, a nonhydrolytic sol-gel reaction between zirconium(IV) isopropoxide and zirconium(IV) chloride at 340 degrees C generated 4 nm sized zirconia nanoparticles. A high-resolution transmission electron microscopic (HRTEM) image showed that the particles have a uniform particle size distribution and that they are highly crystalline. These monodisperse nanoparticles were synthesized without any size selection process. X-ray diffraction studies combined with Rietveld refinement revealed that the ZrO(2) nanocrystals are the high-temperature tetragonal phase, and very close to a cubic phase. When zirconium(IV) bromide is used as a precursor instead of zirconium chloride, zirconia nanoparticles with an average size of 2.9 nm were obtained. The UV-visible absorption spectrum of 4 nm sized zirconia nanoparticles exhibited a strong absorption starting at around 270 nm. A fluorescence spectrum with excitation at 300 nm showed a broad fluorescence band centered around 370 nm. FTIR spectra showed indication of TOPO binding on the ZrO(2) nanoparticle surface. These optical studies also suggest that the nanoparticles are of high quality in terms of narrow particle size distribution and relatively low density of surface trap states.  相似文献   

12.
This work describes a new route for producing bulk materials from extremely high loading levels of inorganic nanoparticles, approaching 80%, while maintaining optical transparency. More specifically, LaF3 nanoparticles with trifluorovinyl ether (TFVE) ligands were synthesized. Because a single nanoparticle will have many functional ligands attached to its surface, the nanoparticles themselves act as cross-linkers, without the need for a matrix phase for the composite, promoting homogeneity and reduced optical scattering. In order to distinguish these new types of composites from traditional nanocomposites, they are referred to here as "omni"-composites because the material is composed entirely (Lat. omnino) of composite nanoparticles.  相似文献   

13.
Adding colloidal nanoparticles into liquid‐crystal media has become a promising pathway either to enhance or to introduce novel properties for improved device performance. Here we designed and synthesized new colloidal hybrid silica nanoparticles passivated with a mesogenic monolayer on the surface to facilitate their organo‐solubility and compatibility in a liquid‐crystal host. The resulting nanoparticles were identified by 1H NMR spectroscopy, TEM, TGA, and UV/Vis techniques, and the hybrid nanoparticles were doped into a dual‐frequency cholesteric liquid‐crystal host to appraise both their compatibility with the host and the effect of the doping concentration on their electro‐optical properties. Interestingly, the silica‐nanoparticle‐doped liquid‐crystalline nanocomposites were found to be able to dynamically self‐organize into a helical configuration and exhibit multi‐stability, that is, homeotropic (transparent), focal conic (opaque), and planar states (partially transparent), depending on the frequency applied at sustained low voltage. Significantly, a higher contrast ratio between the transparent state and scattering state was accomplished in the nanoparticle‐embedded liquid‐crystal systems.  相似文献   

14.
By employing dynamic Monte Carlo simulations, we investigate a coil-to-toroid transition of self-attractive semiflexible polymers and the spatial distributions of nanoparticles in selfattractive semiflexible polymer/nanoparticle composites. The conformation of self-attractive semiflexible polymers depends on bending energy and self-attractive interactions between monomers in polymer chains. A three-stage process of toroid formation for self-attractive semiflexible chains is shown: several isolated toroids, a loose toroid structure, and a compact toroid structure. Utilizing the compact toroid conformations of self-attractive semiflexible chains, we can control effectively the spatial distributions of nanoparticles in self-attractive semiflexible polymer nanocomposites, and an unconventional toroid structure of nanoparticles is observed.  相似文献   

15.
通过一种简易的方法,利用D-半乳糖胺和氯金酸制备出了能够用于肝癌细胞靶向识别的Au纳米颗粒探针.该纳米颗粒形貌和尺寸均一并且生物相容性良好.通过改变反应体系的pH能够对Au纳米颗粒的尺寸进行调控.此外,这种新型的纳米颗粒对RCA120还具有超高的检测灵敏度,实验结果显示其检测限度可以达到2μg·L^-1.  相似文献   

16.
Lipid-polymer hybrid nanoparticle, consisting of a hydrophobic polymeric core and a lipid monolayer shell, represents a new and promising drug delivery platform that has shown controllable particle size and surface functionality, high drug loading yield, sustained drug release profile, and excellent in vitro and in vivo stability. These lipid monolayer-coated polymeric nanoparticles are typically fabricated through a modified nanoprecipitation method, which involves sample heating, vortexing, and solvent evaporation. Herein we report a new and fast method to synthesize lipid-polymer hybrid nanoparticles with controllable and nearly uniform particle size. Using a bath sonication approach, we demonstrate that the whole hybrid nanoparticle synthesis process can be completed in about 5 min compared with a few hours for previous synthesis approaches. The size and polydispersity of the resulting nanoparticles can be readily controlled by tuning the relative concentrations of individual building components. Colloidal stability tests of the synthesized hybrid nanoparticles in PBS buffer and serum show no signs of aggregation over a period of 5 days. The present method improves the production rate of the hybrid nanoparticles by near 20-fold while not compromising the physicochemical properties of the particles. This work may facilitate the bench-to-bedside translation of lipid-polymer hybrid nanoparticles as a robust drug nanocarrier by allowing for fabricating a large amount of these nanoparticles at high production rate.  相似文献   

17.
纳米颗粒分散是无机纳米材料在有机体系中应用的关键.本文提出了采用纳米颗粒液相分散体制备高度分散纳米透明有机无机复合材料的新方法,发明了超重力反应-萃取相转移方法制备纳米颗粒液相透明分散体技术,介绍了其制备原理和实施效果,以及其在纳米复合节能膜、纳米润滑油脂和高固含量光学材料等有机无机纳米复合材料中的最新研究进展.  相似文献   

18.
Silver nanoparticles were synthesized by the reduction of the silver nitrate (AgNO3) using the latex copolymer in ethanol solution under microwave (MW) heating. The reaction parameters such as silver precursor concentration (from 0.005 to 0.1 g/l) and MW power (200–800 W) significantly affect the formation rate, shape, size and distribution of the silver nanoparticles. A significant reduction of irradiation time was observed when the MW energy is compared to conventional thermal reduction processes. The prepared silver nanoparticles show uniform and stable sizes from 5 to 11 nm, which can be stored at room temperature for approximately 12 months without any visible change. These peculiarities indicate that the latex copolymer is a good stabilizer for the silver nanoparticles. The optical properties, morphology, and crystalline structure of the silver-latex copolymer nanocomposites were characterized by the Ultraviolet–Visible spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The study of the TEM images at high magnifications identified the silver nanoparticles as face-centered cubic (fcc) structure with spherical and hexagonal shapes.  相似文献   

19.
以离子型纤维素醚羧甲基纤维素(CMC)的水溶液为反应介质,制备[Zn4CO3(OH)6]CMC水凝胶,洗涤、干燥后经不同温度煅烧前驱物得到ZnO纳米粒子。通过XRD、SEM、TEM、TG-DSC及FT-IR等测试技术对产物的组成、粒径及形态进行表征,研究了CMC对前驱物及ZnO形态和尺寸的影响。结果表明,由于CMC加入对煅烧前驱物产生的空间位阻作用,所制得纳米ZnO粒子粒度分布均匀、分散性好、不易团聚、粒子的平均粒径<20 nm。利用UV-V is测试了纳米ZnO的光吸收性能,所得的纳米ZnO在200~400 nm具有较强的吸收性。  相似文献   

20.
结合功能化溶胶-凝胶(sol-gel)网络结构、自组装技术和纳米粒子效应,提出一种生物传感界面构建方法.利用自组装技术在玻碳电极表面组装氨基化sol-gel膜,通过与自组装膜间的强烈作用将纳米金粒子固定于sol-gel网络中,再通过静电吸附作用实现辣根过氧化物酶(HRP)在纳米金粒子表面的固定化,构建纳米自组装HRP传感界面.将制备的传感器用于对H2O2的催化还原,很好地保持了酶的生物活性,改善了传感器的灵敏度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号