首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Self-assembled structure in room-temperature ionic liquids   总被引:2,自引:0,他引:2  
Self-assembled vesicles, structurally equivalent to some hydrotropes, have been obtained from a Zn2+-fluorous surfactant or in the mixture of Zn2+-fluorous surfactant/zwitterionic surfactant in room-temperature ionic liquids (RTILs). The existence of bilayers arranged in vesicles in RTILs would be very exciting, open several new possibilities as reaction media, and increase our understanding of the physical and chemical factors for self-assembling systems in RTILs.  相似文献   

5.
Light-harvesting peptide nanotubes are synthesized by the self-assembly of diphenylalanine with THPP and platinum nanoparticles (nPt; see picture; TEOA = triethanolamine). The light-harvesting peptide nanotubes are suitable for mimicking photosynthesis because of their structure and electrochemical properties that are similar to the ones of photosystem?I in natural photosynthesis.  相似文献   

6.
7.
8.
9.
Microarray-based technologies have attracted attention in chemical biology by virtue of their miniaturized format, which is well suited to probe ligand-protein interactions or investigate enzymatic activity in complex biological mixtures. A number of research groups have reported the preparation of surfaces on microarrays with specific functional groups to chemoselectively attach small molecules from libraries. We have developed an alternative method whereby libraries are encoded with peptide nucleic acid (PNA), such that libraries which exist as mixtures in solution self-assemble into an organized microarray through hybridization to produce readily available DNA arrays. This allows libraries synthesized by split and mix methods to be decoded in a single step. An asset of this method compared to direct spotting is that libraries can be used in solution for bioassays prior to self-assembly into the microarray format.  相似文献   

10.
Conjugation with artificial nucleic acids allows proteins to be modified with a synthetically accessible, robust tag. This attachment is addressable in a highly specific manner by means of molecular recognition events, such as Watson–Crick hybridization. Such DNA–protein conjugates, with their combined properties, have a broad range of applications, such as in high‐performance biomedical diagnostic assays, fundamental research on molecular recognition, and the synthesis of DNA nanostructures. This Review surveys current approaches to generate DNA–protein conjugates as well as recent advances in their applications. For example, DNA–protein conjugates have been assembled into model systems for the investigation of catalytic cascade reactions and light‐harvesting devices. Such hybrid conjugates are also used for the biofunctionalization of planar surfaces for micro‐ and nanoarrays, and for decorating inorganic nanoparticles to enable applications in sensing, materials science, and catalysis.  相似文献   

11.
Three perylene-3,4;9,10-tetracarboxydiimide (PTCDI) compounds with two dodecyloxy or thiododecyl chains attached at the bay positions of the perylene ring, PTCDIs 1-3, were fabricated into nanoassemblies by a solution injection method. The morphologies of these self-assembled nanostructures were determined by transmission electronic microscopy (TEM), scanning electronic microscopy (SEM), and atomic force microscopy (AFM). PTCDI compound 1, with two dodecyloxy groups, forms long, flexible nanowires with an aspect ratio of over 200, while analogue 3, with two thiododecyl groups, self-assembles into spherical particles. In line with these results, PTCDI 2, with one dodecyloxy group and one thiododecyl group, forms nanorods with an aspect ratio of around 20. Electronic absorption and fluorescence spectroscopy results reveal the formation of H-aggregates in the nanostructures of these PTCDI compounds owing to the pi-pi interaction between the substituted perylene molecules and also suggest a decreasing pi-pi interaction in the order 1>2>3, which corresponds well with the morphology of the corresponding nanoassemblies. On the basis of DFT calculations, the effect of different substituents at the bay positions of the perylene ring on the pi-pi interaction between substituted perylene molecules and the morphology of self-assembled nanostructures is rationalized by the differing degree of twisting of the conjugated perylene system caused by the different substituents and the different bending of the alkoxy and thioalkyl groups with respect to the plane of the naphthalene.  相似文献   

12.
13.
We report on the microarray-based in vitro evaluation of two libraries of DNA oligonucleotide sequences, designed in silico for applications in supramolecular self-assembly, such as DNA computing and DNA-based nanosciences. In this first study which is devoted to the comparison of sequence motif properties theoretically predicted with their performance in real-life, the DNA-directed immobilization (DDI) of proteins was used as an example of DNA-based self-assembly. Since DDI technologies, DNA computing, and DNA nanoconstruction essentially depend on similar prereguisites, in particular, large and uniform hybridization efficiencies combined with low nonspecific cross-reactivity between individual sequences, we anticipate that the microarray approach demonstrated here will enable rapid evaluation of other DNA sequence libraries.  相似文献   

14.
15.
Nanoparticle brushes : Complex nanostructures can be formed by self assembly of amphiphilic CdSe/CdS core–shell nanoparticles that bear a brushlike layer of poly(ethylene oxide) chains. This route is based on controlling the volume fractions of hydrophilic and hydrophobic moieties within the particles and allows the formation of micellar, cylindrical, or vesicular nanoobjects (see picture).

  相似文献   


16.
17.
Biological membranes play a key role for the function of living organisms. Thus, many artificial systems have been designed to mimic natural cell membranes and their functions. A useful concept for the preparation of functional membranes is the embedding of synthetic amphiphiles into vesicular bilayers. The dynamic nature of such noncovalent assemblies allows the rapid and simple development of bio‐inspired responsive nanomaterials, which find applications in molecular recognition, sensing or catalysis. However, the complexity that can be achieved in artificial functionalized membranes is still rather limited and the control of their dynamic properties and the analysis of membrane structures down to the molecular level remain challenging.  相似文献   

18.
19.
Concentration matters: the self-assembly of title compound 1 evolves from well-defined ribbons to vesicles to baskets, upon simply decreasing the concentration of 1 in tetrahydrofuran. Electron microscopy revealed a unique self-assembled structure: baskets are formed by curved and self-wrapped nanometer-thin ribbons. The self-assembly of π-conjugated molecule 1 enables to construct nano/micro structures with desired optoelectronic properties.  相似文献   

20.
Based on their rigid‐rod structure all‐conjugated, rod‐rod block copolymers show a preferred tendency to self‐assemble into low‐curvature vesicular or lamellar nanostructures independent from their specific chemical structure and composition. This unique and attractive behaviour is clearly illustrated in a few examples of such all‐conjugated block copolymers. The resulting nanostructured heteromaterials may find applications in electronic devices or artificial membranes.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号