首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Let A 1(x, D) and A 2(x, D) be differential operators of the first order acting on l-vector functions ${u= (u_1, \ldots, u_l)}$ in a bounded domain ${\Omega \subset \mathbb{R}^{n}}$ with the smooth boundary ${\partial\Omega}$ . We assume that the H 1-norm ${\|u\|_{H^{1}(\Omega)}}$ is equivalent to ${\sum_{i=1}^2\|A_iu\|_{L^2(\Omega)} + \|B_1u\|_{H^{\frac{1}{2}}(\partial\Omega)}}$ and ${\sum_{i=1}^2\|A_iu\|_{L^2(\Omega)} + \|B_2u\|_{H^{\frac{1}{2}}(\partial\Omega)}}$ , where B i  = B i (x, ν) is the trace operator onto ${\partial\Omega}$ associated with A i (x, D) for i = 1, 2 which is determined by the Stokes integral formula (ν: unit outer normal to ${\partial\Omega}$ ). Furthermore, we impose on A 1 and A 2 a cancellation property such as ${A_1A_2^{\prime}=0}$ and ${A_2A_1^{\prime}=0}$ , where ${A^{\prime}_i}$ is the formal adjoint differential operator of A i (i = 1, 2). Suppose that ${\{u_m\}_{m=1}^{\infty}}$ and ${\{v_m\}_{m=1}^{\infty}}$ converge to u and v weakly in ${L^2(\Omega)}$ , respectively. Assume also that ${\{A_{1}u_m\}_{m=1}^{\infty}}$ and ${\{A_{2}v_{m}\}_{m=1}^{\infty}}$ are bounded in ${L^{2}(\Omega)}$ . If either ${\{B_{1}u_m\}_{m=1}^{\infty}}$ or ${\{B_{2}v_m\}_{m=1}^{\infty}}$ is bounded in ${H^{\frac{1}{2}}(\partial\Omega)}$ , then it holds that ${\int_{\Omega}u_m\cdot v_m \,{\rm d}x \to \int_{\Omega}u\cdot v \,{\rm d}x}$ . We also discuss a corresponding result on compact Riemannian manifolds with boundary.  相似文献   

2.
We consider the singularly perturbed system $\dot x$ =εf(x,y,ε,λ), $\dot y$ =g(x,y,ε,λ). We assume that for small (ε,λ), (0,0) is a hyperbolic equilibrium on the normally hyperbolic centre manifold y=0 and that y 0(t) is a homoclinic solution of $\dot y$ =g(0,y,0,0). Under an additional condition, we show that there is a curve in the (ε,λ) parameter space on which the perturbed system has a homoclinic orbit also. We investigate the transversality properties of this orbit and use our results to give examples of 4 dimensional systems with Sil'nikov saddle-focus homoclinic orbits.  相似文献   

3.
In this paper, we consider the generalized Navier?CStokes equations where the space domain is ${\mathbb{T}^N}$ or ${\mathbb{R}^N, N\geq3}$ . The generalized Navier?CStokes equations here refer to the equations obtained by replacing the Laplacian in the classical Navier?CStokes equations by the more general operator (???) ?? with ${\alpha\in (\frac{1}{2},\frac{N+2}{4})}$ . After a suitable randomization, we obtain the existence and uniqueness of the local mild solution for a large set of the initial data in ${H^s, s\in[-\alpha,0]}$ , if ${1 < \alpha < \frac{N+2}{4}, s\in(1-2\alpha,0]}$ , if ${\frac{1}{2} < \alpha\leq 1}$ . Furthermore, we obtain the probability for the global existence and uniqueness of the solution. Specially, our result shows that, in some sense, the Cauchy problem of the classical Navier?CStokes equation is local well-posed for a large set of the initial data in H ?1+, exhibiting a gain of ${\frac{N}{2}-}$ derivatives with respect to the critical Hilbert space ${H^{\frac{N}{2}-1}}$ .  相似文献   

4.
In this paper, we establish the local well-posedness for the Cauchy problem of a simplified version of hydrodynamic flow of nematic liquid crystals in ${\mathbb{R}^3}$ for any initial data (u 0, d 0) having small ${L^{3}_{\rm uloc}}$ -norm of ${(u_{0}, \nabla d_{0})}$ . Here ${L^{3}_{\rm uloc}(\mathbb{R}^3)}$ is the space of uniformly locally L 3-integrable functions. For any initial data (u 0, d 0) with small ${\|(u_0, \nabla d_0)\|_{L^{3}(\mathbb{R}^3)}}$ , we show that there exists a unique, global solution to the problem under consideration which is smooth for t > 0 and has monotone deceasing L 3-energy for ${t \geqq 0}$ .  相似文献   

5.
We consider as in Parts I and II a family of linearly elastic shells of thickness 2?, all having the same middle surfaceS=?(?)?R 3, whereω?R 2 is a bounded and connected open set with a Lipschitz-continuous boundary, and? ∈ ?3 (?;R 3). The shells are clamped on a portion of their lateral face, whose middle line is?(γ 0), whereγ 0 is a portion of withlength γ 0>0. For all?>0, let $\zeta _i^\varepsilon$ denote the covariant components of the displacement $u_i^\varepsilon g^{i,\varepsilon }$ of the points of the shell, obtained by solving the three-dimensional problem; let $\zeta _i^\varepsilon$ denote the covariant components of the displacement $\zeta _i^\varepsilon$ a i of the points of the middle surfaceS, obtained by solving the two-dimensional model ofW.T. Koiter, which consists in finding $$\zeta ^\varepsilon = \left( {\zeta _i^\varepsilon } \right) \in V_K (\omega ) = \left\{ {\eta = (\eta _\iota ) \in {\rm H}^1 (\omega ) \times H^1 (\omega ) \times H^2 (\omega ); \eta _i = \partial _v \eta _3 = 0 on \gamma _0 } \right\}$$ such that $$\begin{gathered} \varepsilon \mathop \smallint \limits_\omega a^{\alpha \beta \sigma \tau } \gamma _{\sigma \tau } (\zeta ^\varepsilon )\gamma _{\alpha \beta } (\eta )\sqrt a dy + \frac{{\varepsilon ^3 }}{3} \mathop \smallint \limits_\omega a^{\alpha \beta \sigma \tau } \rho _{\sigma \tau } (\zeta ^\varepsilon )\rho _{\alpha \beta } (\eta )\sqrt a dy \hfill \\ = \mathop \smallint \limits_\omega p^{i,\varepsilon } \eta _i \sqrt a dy for all \eta = (\eta _i ) \in V_K (\omega ), \hfill \\ \end{gathered}$$ where $a^{\alpha \beta \sigma \tau }$ are the components of the two-dimensional elasticity tensor ofS, $\gamma _{\alpha \beta }$ (η) and $\rho _{\alpha \beta }$ (η) are the components of the linearized change of metric and change of curvature tensors ofS, and $p^{i,\varepsilon }$ are the components of the resultant of the applied forces. Under the same assumptions as in Part I, we show that the fields $\frac{1}{{2_\varepsilon }}\smallint _{ - \varepsilon }^\varepsilon u_i^\varepsilon g^{i,\varepsilon } dx_3^\varepsilon$ and $\zeta _i^\varepsilon$ a i , both defined on the surfaceS, have the same principal part as? → 0, inH 1 (ω) for the tangential components, and inL 2(ω) for the normal component; under the same assumptions as in Part II, we show that the same fields again have the same principal part as? → 0, inH 1 (ω) for all their components. For “membrane” and “flexural” shells, the two-dimensional model ofW.T. Koiter is therefore justified.  相似文献   

6.
For a domain ${\Omega \subset \mathbb{R}^{N}}$ we consider the equation $$-\Delta{u} + V(x)u = Q_n(x)|{u}|^{p-2}u$$ with zero Dirichlet boundary conditions and ${p\in(2, 2^*)}$ . Here ${V \geqq 0}$ and Q n are bounded functions that are positive in a region contained in ${\Omega}$ and negative outside, and such that the sets {Q n  > 0} shrink to a point ${x_0 \in \Omega}$ as ${n \to \infty}$ . We show that if u n is a nontrivial solution corresponding to Q n , then the sequence (u n ) concentrates at x 0 with respect to the H 1 and certain L q -norms. We also show that if the sets {Q n  > 0} shrink to two points and u n are ground state solutions, then they concentrate at one of these points.  相似文献   

7.
The present note is a continuation of the author??s effort to study the existence of continuously differentiable solutions to the semi-implicit system of differential equations (1) $$f(x^{\prime}(t)) = g(t, x(t))$$ (2) $$\quad x(0) = x_0,$$ where
  • ${\quad\Omega_g \subseteq \mathbb{R} \times\mathbb{R}^n}$ is an open set containing (0, x 0) and ${g:\Omega_g \rightarrow\mathbb{R}^n}$ is a continuous function,
  • ${\quad\Omega_f \subseteq \mathbb{R}^n}$ is an open set and ${f:\Omega_f\rightarrow\mathbb{R}^n}$ is a continuous function.
  • The transformation of (1)?C(2) into a solvable explicit system of differential equations is trivial if f is locally injective around an element ${\gamma\in \Omega_f\cap f^{-1}(g(0,x_0))}$ . In this paper, we study (1)?C(2) when such a translation is not possible because of the inherent multivalued nature of f ?1.  相似文献   

    8.
    In a recent article (Cancès et al. in Commun Math Phys 281:129–177, 2008), we have rigorously derived, by means of bulk limit arguments, a new variational model to describe the electronic ground state of insulating or semiconducting crystals in the presence of local defects. In this so-called reduced Hartree–Fock model, the ground state electronic density matrix is decomposed as ${\gamma = \gamma^0_{\rm per} + Q_{\nu,\varepsilon_{\rm F}}}$ , where ${\gamma^0_{\rm per}}$ is the ground state density matrix of the host crystal and ${Q_{\nu,\varepsilon_{\rm F}}}$ the modification of the electronic density matrix generated by a modification ν of the nuclear charge of the host crystal, the Fermi level ε F being kept fixed. The purpose of the present article is twofold. First, we study in more detail the mathematical properties of the density matrix ${Q_{\nu,\varepsilon_{\rm F}}}$ (which is known to be a self-adjoint Hilbert–Schmidt operator on ${L^2(\mathbb{R}^3)}$ ). We show in particular that if ${\int_{\mathbb{R}^3}\,\nu \neq 0, Q_{\nu,\varepsilon_{\rm F}}}$ is not trace-class. Moreover, the associated density of charge is not in ${L^1(\mathbb{R}^3)}$ if the crystal exhibits anisotropic dielectric properties. These results are obtained by analyzing, for a small defect ν, the linear and nonlinear terms of the resolvent expansion of ${Q_{\nu,\varepsilon_{\rm F}}}$ . Second, we show that, after an appropriate rescaling, the potential generated by the microscopic total charge (nuclear plus electronic contributions) of the crystal in the presence of the defect converges to a homogenized electrostatic potential solution to a Poisson equation involving the macroscopic dielectric permittivity of the crystal. This provides an alternative (and rigorous) derivation of the Adler–Wiser formula.  相似文献   

    9.
    In this paper we establish the square integrability of the nonnegative hydrostatic pressure p, that emerges in the minimization problem $$\inf_{\mathcal{K}}\int_{\varOmega}|\nabla \textbf {v}|^2, \quad\varOmega\subset \mathbb {R}^2 $$ as the Lagrange multiplier corresponding to the incompressibility constraint det?v=1 a.e. in Ω. Our method employs the Euler-Lagrange equation for the mollified Cauchy stress C satisfied in the image domain Ω ?=u(Ω). This allows to construct a convex function ψ, defined in the image domain, such that the measure of the normal mapping of ψ controls the L 2 norm of the pressure. As a by-product we conclude that $\textbf {u}\in C^{\frac{1}{2}}_{\textrm {loc}}(\varOmega)$ if the dual pressure (introduced in Karakhanyan, Manuscr. Math. 138:463, 2012) is nonnegative.  相似文献   

    10.
    Let A be a positive self-adjoint elliptic operator of order 2m on a bounded open set Ω ?? k . We consider the variational eigenvalue problem (P) $$\mathcal{A}u = \lambda r{\text{(}}x{\text{)}}u,{\text{ }}x \in \Omega ,$$ , with Dirichlet or Neumann boundary conditions; here the “weight” r is a real-valued function on Ω which is allowed to change sign in Ω or to be discontinuous. Such problems occur naturally in the study of many nonlinear elliptic equations. In an earlier work [Trans. Amer. Math. Soc. 295 (1986), pp. 305–324], we have determined the leading term for the asymptotics of the eigenvalues λ of (P). In the present paper, we obtain, under more stringent assumptions, the corresponding remainder estimates. More precisely, let N ±(λ) be the number of positive (respectively, negative) eigenvalues of (P) less than λ>0 (respectively, greater than λ<0); set r ± = max (±r, 0) and \(\Omega _ \pm = {\text{\{ }}x \in \Omega :r{\text{(}}x{\text{)}} \gtrless {\text{0\} }}\) . We show that $$N^ \pm {\text{(}}\lambda {\text{) = }}\mathop \smallint \limits_{\Omega _ \pm } {\text{(}}\lambda r{\text{(}}x{\text{))}}^{\frac{k}{{{\text{2}}m}}} {\text{ }}\mu \prime _\mathcal{A} {\text{(}}x{\text{) }}dx + 0{\text{(}}\left| \lambda \right|^{\frac{{k - 1}}{{{\text{2}}m}} + \delta } {\text{) as }}\lambda \to \pm \infty {\text{,}}$$ , where δ>0 and μ A (x) is the Browder-Gårding density associated with the principal part of A. How small δ can be chosen depends on the “regularity” of the leading coefficients of A, r ±, and of the boundary of Ω ±. These results seem to be new even for positive weights.  相似文献   

    11.
    In this paper, we prove unique existence of solutions to the generalized resolvent problem of the Stokes operator with first order boundary condition in a general domain ${\Omega}$ of the N-dimensional Eulidean space ${\mathbb{R}^N, N \geq 2}$ . This type of problem arises in the mathematical study of the flow of a viscous incompressible one-phase fluid with free surface. Moreover, we prove uniform estimates of solutions with respect to resolvent parameter ${\lambda}$ varying in a sector ${\Sigma_{\sigma, \lambda_0} = \{\lambda \in \mathbb{C} \mid |\arg \lambda| < \pi-\sigma, \enskip |\lambda| \geq \lambda_0\}}$ , where ${0 < \sigma < \pi/2}$ and ${\lambda_0 \geq 1}$ . The essential assumption of this paper is the existence of a unique solution to a suitable weak Dirichlet problem, namely it is assumed the unique existence of solution ${p \in \hat{W}^1_{q, \Gamma}(\Omega)}$ to the variational problem: ${(\nabla p, \nabla \varphi) = (f, \nabla \varphi)}$ for any ${\varphi \in \hat W^1_{q', \Gamma}(\Omega)}$ . Here, ${1 < q < \infty, q' = q/(q-1), \hat W^1_{q, \Gamma}(\Omega)}$ is the closure of ${W^1_{q, \Gamma}(\Omega) = \{ p \in W^1_q(\Omega) \mid p|_\Gamma = 0\}}$ by the semi-norm ${\|\nabla \cdot \|_{L_q(\Omega)}}$ , and ${\Gamma}$ is the boundary of ${\Omega}$ . In fact, we show that the unique solvability of such a Dirichlet problem is necessary for the unique existence of a solution to the resolvent problem with uniform estimate with respect to resolvent parameter varying in ${(\lambda_0, \infty)}$ . Our assumption is satisfied for any ${q \in (1, \infty)}$ by the following domains: whole space, half space, layer, bounded domains, exterior domains, perturbed half space, perturbed layer, but for a general domain, we do not know any result about the unique existence of solutions to the weak Dirichlet problem except for q =  2.  相似文献   

    12.
    We consider the focusing L 2-critical half-wave equation in one space dimension, $$i \partial_t u = D u - |u|^2 u$$ , where D denotes the first-order fractional derivative. Standard arguments show that there is a critical threshold ${M_{*} > 0}$ such that all H 1/2 solutions with ${\|u\|_{L^2} < M_*}$ extend globally in time, while solutions with ${\|u\|_{L^2} \geq M_*}$ may develop singularities in finite time. In this paper, we first prove the existence of a family of traveling waves with subcritical arbitrarily small mass. We then give a second example of nondispersive dynamics and show the existence of finite-time blowup solutions with minimal mass ${\|u_0\|_{L^2} = M_*}$ . More precisely, we construct a family of minimal mass blowup solutions that are parametrized by the energy E 0 > 0 and the linear momentum ${P_0 \in \mathbb{R}}$ . In particular, our main result (and its proof) can be seen as a model scenario of minimal mass blowup for L 2-critical nonlinear PDEs with nonlocal dispersion.  相似文献   

    13.
    We consider the sinh-Poisson equation $$(P) _ \lambda - \Delta{u} = \lambda \, {\rm sinh} \, u \quad {\rm in} \, \Omega, \quad u = 0 \quad {\rm on} \, \partial\Omega$$ , where Ω is a smooth bounded domain in ${\mathbb{R}^2}$ and λ is a small positive parameter. If ${0 \in \Omega}$ and Ω is symmetric with respect to the origin, for any integer k if λ is small enough, we construct a family of solutions to (P) λ , which blows up at the origin, whose positive mass is 4πk(k?1) and negative mass is 4πk(k + 1). This gives a complete answer to an open problem formulated by Jost et al. (Calc Var PDE 31(2):263–276, 2008).  相似文献   

    14.
    In this paper we study the fully nonlinear free boundary problem $$\left\{\begin{array}{ll}F(D^{2}u) = 1 & {\rm almost \, everywhere \, in}\, B_{1} \cap \Omega\\ |D^{2} u| \leqq K & {\rm almost \, everywhere \, in} \, B_{1} \setminus \Omega,\end{array}\right.$$ where K > 0, and Ω is an unknown open set. Our main result is the optimal regularity for solutions to this problem: namely, we prove that W 2,n solutions are locally C 1,1 inside B 1. Under the extra condition that ${\Omega \supset \{D{u} \neq 0 \}}$ and a uniform thickness assumption on the coincidence set {D u = 0}, we also show local regularity for the free boundary ${\partial \Omega \cap B_1}$ .  相似文献   

    15.
    We consider the steady Stokes and Oseen problems in bounded and exterior domains of ${\mathbb{R}^n}$ of class C k-1,1 (n = 2, 3; k ≥ 2). We prove existence and uniqueness of a very weak solution for boundary data a in ${W^{2-k-1/q,q} (\partial\Omega)}$ . If ${\Omega}$ is of class ${C^\infty}$ , we can assume a to be a distribution on ${\partial\Omega}$ .  相似文献   

    16.
    17.
    18.
    In this paper, we construct stationary classical solutions of the incompressible Euler equation approximating singular stationary solutions of this equation. This procedure is carried out by constructing solutions to the following elliptic problem $$\left\{\begin{array}{l@{\quad}l} -\varepsilon^2 \Delta u = \sum\limits_{i=1}^m \chi_{\Omega_i^{+}} \left(u - q - \frac{\kappa_i^{+}}{2\pi} {\rm ln} \frac{1}{\varepsilon}\right)_+^p\\ \quad - \sum_{j=1}^n \chi_{\Omega_j^{-}} \left(q - \frac{\kappa_j^{-}}{2\pi} {\rm \ln} \frac{1}{\varepsilon} - u\right)_+^p , \quad \quad x \in \Omega,\\ u = 0, \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad x \in \partial \Omega,\end{array}\right.$$ where p > 1, ${\Omega \subset \mathbb{R}^2}$ is a bounded domain, ${\Omega_i^{+}}$ and ${\Omega_j^{-}}$ are mutually disjoint subdomains of Ω and ${\chi_{\Omega_i^{+}} ({\rm resp}.\; \chi_{\Omega_j^{-}})}$ are characteristic functions of ${\Omega_i^{+}({\rm resp}. \;\Omega_j^{-}})$ , q is a harmonic function. We show that if Ω is a simply-connected smooth domain, then for any given C 1-stable critical point of Kirchhoff–Routh function ${\mathcal{W}\;(x_1^{+},\ldots, x_m^{+}, x_1^{-}, \ldots, x_n^{-})}$ with ${\kappa^{+}_i > 0\,(i = 1,\ldots, m)}$ and ${\kappa^{-}_j > 0\,(j = 1,\ldots,n)}$ , there is a stationary classical solution approximating stationary m + n points vortex solution of incompressible Euler equations with total vorticity ${\sum_{i=1}^m \kappa^{+}_i -\sum_{j=1}^n \kappa_j^{-}}$ . The case that n = 0 can be dealt with in the same way as well by taking each ${\Omega_j^{-}}$ as an empty set and set ${\chi_{\Omega_j^{-}} \equiv 0,\,\kappa^{-}_j=0}$ .  相似文献   

    19.
    The paper addresses the question of the existence of a locally self-similar blow-up for the incompressible Euler equations. Several exclusion results are proved based on the L p -condition for velocity or vorticity and for a range of scaling exponents. In particular, in N dimensions if in self-similar variables ${u \in L^p}$ and ${u \sim \frac{1}{t^{\alpha/(1+\alpha)}}}$ , then the blow-up does not occur, provided ${\alpha > N/2}$ or ${-1 < \alpha \leq N\,/p}$ . This includes the L 3 case natural for the Navier–Stokes equations. For ${\alpha = N\,/2}$ we exclude profiles with asymptotic power bounds of the form ${ |y|^{-N-1+\delta} \lesssim |u(y)| \lesssim |y|^{1-\delta}}$ . Solutions homogeneous near infinity are eliminated, as well, except when homogeneity is scaling invariant.  相似文献   

    20.
    Yongxin Yuan  Hao Liu 《Meccanica》2013,48(9):2245-2253
    The procedure of updating an existing but inaccurate model is an essential step toward establishing an effective model. Updating damping and stiffness matrices simultaneously with measured modal data can be mathematically formulated as following two problems. Problem 1: Let M a SR n×n be the analytical mass matrix, and Λ=diag{λ 1,…,λ p }∈C p×p , X=[x 1,…,x p ]∈C n×p be the measured eigenvalue and eigenvector matrices, where rank(X)=p, p<n and both Λ and X are closed under complex conjugation in the sense that $\lambda_{2j} = \bar{\lambda}_{2j-1} \in\nobreak{\mathbf{C}} $ , $x_{2j} = \bar{x}_{2j-1} \in{\mathbf{C}}^{n} $ for j=1,…,l, and λ k R, x k R n for k=2l+1,…,p. Find real-valued symmetric matrices D and K such that M a 2+DXΛ+KX=0. Problem 2: Let D a ,K a SR n×n be the analytical damping and stiffness matrices. Find $(\hat{D}, \hat{K}) \in\mathbf{S}_{\mathbf{E}}$ such that $\| \hat{D}-D_{a} \|^{2}+\| \hat{K}-K_{a} \|^{2}= \min_{(D,K) \in \mathbf{S}_{\mathbf{E}}}(\| D-D_{a} \|^{2} +\|K-K_{a} \|^{2})$ , where S E is the solution set of Problem 1 and ∥?∥ is the Frobenius norm. In this paper, a gradient based iterative (GI) algorithm is constructed to solve Problems 1 and 2. A sufficient condition for the convergence of the iterative method is derived and the range of the convergence factor is given to guarantee that the iterative solutions consistently converge to the unique minimum Frobenius norm symmetric solution of Problem 2 when a suitable initial symmetric matrix pair is chosen. The algorithm proposed requires less storage capacity than the existing numerical ones and is numerically reliable as only matrix manipulation is required. Two numerical examples show that the introduced iterative algorithm is quite efficient.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号