首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we present a predictor-corrector smoothing Newton method for solving nonlinear symmetric cone complementarity problems (SCCP) based on the symmetrically perturbed smoothing function. Under a mild assumption, the solution set of the problem concerned is just nonempty, we show that the proposed algorithm is globally and locally quadratic convergent. Also, the algorithm finds a maximally complementary solution to the SCCP. Numerical results for second order cone complementarity problems (SOCCP), a special case of SCCP, show that the proposed algorithm is effective.  相似文献   

2.
The Weiszfeld algorithm for continuous location problems can be considered as an iteratively reweighted least squares method. It generally exhibits linear convergence. In this paper, a Newton algorithm with similar simplicity is proposed to solve a continuous multifacility location problem with the Euclidean distance measure. Similar to the Weiszfeld algorithm, the main computation can be solving a weighted least squares problem at each iteration. A Cholesky factorization of a symmetric positive definite band matrix, typically with a small band width (e.g., a band width of two for a Euclidean location problem on a plane) is performed. This new algorithm can be regarded as a Newton acceleration to the Weiszfeld algorithm with fast global and local convergence. The simplicity and efficiency of the proposed algorithm makes it particularly suitable for large-scale Euclidean location problems and parallel implementation. Computational experience suggests that the proposed algorithm often performs well in the absence of the linear independence or strict complementarity assumption. In addition, the proposed algorithm is proven to be globally convergent under similar assumptions for the Weiszfeld algorithm. Although local convergence analysis is still under investigation, computation results suggest that it is typically superlinearly convergent.  相似文献   

3.
利用逆矩阵的Neumann级数形式,将在Schur插值问题中遇到的含未知矩阵二次项之逆的非线性矩阵方程转化为高次多项式矩阵方程,然后采用牛顿算法求高次多项式矩阵方程的对称解,并采用修正共轭梯度法求由牛顿算法每一步迭代计算导出的线性矩阵方程的对称解或者对称最小二乘解,建立求非线性矩阵方程的对称解的双迭代算法.双迭代算法仅要求非线性矩阵方程有对称解,不要求它的对称解唯一,也不对它的系数矩阵做附加限定.数值算例表明,双迭代算法是有效的.  相似文献   

4.
We propose a non-interior continuation algorithm for the solution of the linear complementarity problem (LCP) with a P0 matrix. The proposed algorithm differentiates itself from the current continuation algorithms by combining good global convergence properties with good local convergence properties under unified conditions. Specifically, it is shown that the proposed algorithm is globally convergent under an assumption which may be satisfied even if the solution set of the LCP is unbounded. Moreover, the algorithm is globally linearly and locally superlinearly convergent under a nonsingularity assumption. If the matrix in the LCP is a P* matrix, then the above results can be strengthened to include global linear and local quadratic convergence under a strict complementary condition without the nonsingularity assumption.  相似文献   

5.
本文研究了在控制理论和随机滤波等领域中遇到的一类含高次逆幂的矩阵方程的等价矩阵方程对称解的数值计算问题.采用牛顿算法求等价矩阵方程的对称解,并采用修正共轭梯度法求由牛顿算法每一步迭代计算导出的线性矩阵方程的对称解或者对称最小二乘解,建立了求这类矩阵方程对称解的双迭代算法,数值算例验证了双迭代算法是有效的.  相似文献   

6.
A feasible interior point type algorithm is proposed for the inequality constrained optimization. Iterate points are prevented from leaving to interior of the feasible set. It is observed that the algorithm is merely necessary to solve three systems of linear equations with the same coefficient matrix. Under some suitable conditions, superlinear convergence rate is obtained. Some numerical results are also reported.  相似文献   

7.
An algorithm for accurate numerical inversion of slowly convergent Fourier and Laplace Transforms is studied. It makes use of several equidistant grids with the same number of points, covering different symmetric intervals of the time and frequency axes. Typically, the number of operations per computed function value is about twice as large as for an ordinary FFT. The distribution of points is, however, for many applications much more adequate because, globally, the union of the grids is an approximately equidistant point set on a logarithmic scale.Dedicated to Gene H. Golub on the occasion of his 60'th birthday  相似文献   

8.
A convex optimization problem for a strictly convex objective function over the fixed point set of a nonexpansive mapping includes a network bandwidth allocation problem, which is one of the central issues in modern communication networks. We devised an iterative algorithm, called a fixed point optimization algorithm, for solving the convex optimization problem and conducted a convergence analysis on the algorithm. The analysis guarantees that the algorithm, with slowly diminishing step-size sequences, weakly converges to a unique solution to the problem. Moreover, we apply the proposed algorithm to a network bandwidth allocation problem and show its effectiveness.  相似文献   

9.
This paper presents an optimization technique for solving a maximum flow problem arising in widespread applications in a variety of settings. On the basis of the Karush–Kuhn–Tucker (KKT) optimality conditions, a neural network model is constructed. The equilibrium point of the proposed neural network is then proved to be equivalent to the optimal solution of the original problem. It is also shown that the proposed neural network model is stable in the sense of Lyapunov and it is globally convergent to an exact optimal solution of the maximum flow problem. Several illustrative examples are provided to show the feasibility and the efficiency of the proposed method in this paper.  相似文献   

10.
A branch and bound algorithm is proposed for globally solving a class of nonconvex programming problems (NP). For minimizing the problem, linear lower bounding functions (LLBFs) of objective function and constraint functions are constructed, then a relaxation linear programming is obtained which is solved by the simplex method and which provides the lower bound of the optimal value. The proposed algorithm is convergent to the global minimum through the successive refinement of linear relaxation of the feasible region and the solutions of a series of linear programming problems. And finally the numerical experiment is reported to show the feasibility and effectiveness of the proposed algorithm.  相似文献   

11.
There has recently been ample interest in the question of which sets can be represented by linear matrix inequalities (LMIs). A necessary condition is that the set is rigidly convex, and it has been conjectured that rigid convexity is also sufficient. To this end Helton and Vinnikov conjectured that any real zero polynomial admits a determinantal representation with symmetric matrices. We disprove this conjecture. By relating the question of finding LMI representations to the problem of determining whether a polymatroid is representable over the complex numbers, we find a real zero polynomial such that no power of it admits a determinantal representation. The proof uses recent results of Wagner and Wei on matroids with the half-plane property, and the polymatroids associated to hyperbolic polynomials introduced by Gurvits.  相似文献   

12.
In this paper, we propose a feasible QP-free method for solving nonlinear inequality constrained optimization problems. A new working set is proposed to estimate the active set. Specially, to determine the working set, the new method makes use of the multiplier information from the previous iteration, eliminating the need to compute a multiplier function. At each iteration, two or three reduced symmetric systems of linear equations with a common coefficient matrix involving only constraints in the working set are solved, and when the iterate is sufficiently close to a KKT point, only two of them are involved. Moreover, the new algorithm is proved to be globally convergent to a KKT point under mild conditions. Without assuming the strict complementarity, the convergence rate is superlinear under a condition weaker than the strong second-order sufficiency condition. Numerical experiments illustrate the efficiency of the algorithm.  相似文献   

13.
In this paper we study divisible load scheduling in systems with limited memory. Divisible loads are parallel computations which can be divided into independent parts processed in parallel on remote computers, and the part sizes may be arbitrary. The distributed system is a heterogeneous single level tree. The total size of processor memories is too small to accommodate the whole load at any moment of time. Therefore, the load is distributed in many rounds. Memory reservations have block nature. The problem consists in distributing the load taking into account communication time, computation time, and limited memory buffers so that the whole processing finishes as early as possible. This problem is both combinatorial and algebraic in nature. Therefore, hybrid algorithms are given to solve it. Two algorithms are proposed to solve the combinatorial component. A branch-and-bound algorithm is nearly unusable due to its complexity. Then, a genetic algorithm is proposed with more tractable execution times. For a given solution of the combinatorial part we formulate the solution of the algebraic part as a linear programming problem. An extensive computational study is performed to analyze the impact of various system parameters on the quality of the solutions. From this we were able to infer on the nature of the scheduling problem.  相似文献   

14.
In this paper, we propose a smoothing algorithm for solving the monotone symmetric cone complementarity problems (SCCP for short) with a nonmonotone line search. We show that the nonmonotone algorithm is globally convergent under an assumption that the solution set of the problem concerned is nonempty. Such an assumption is weaker than those given in most existing algorithms for solving optimization problems over symmetric cones. We also prove that the solution obtained by the algorithm is a maximally complementary solution to the monotone SCCP under some assumptions. This work was supported by National Natural Science Foundation of China (Grant Nos. 10571134, 10671010) and Natural Science Foundation of Tianjin (Grant No. 07JCYBJC05200)  相似文献   

15.
基于交替投影算法求解单变量线性约束矩阵方程问题   总被引:2,自引:1,他引:1  
研究如下线性约束矩阵方程求解问题:给定A∈R~(m×n),B∈R~(n×p)和C∈R~(m×p),求矩阵X∈R(?)R~(n×n)"使得A×B=C以及相应的最佳逼近问题,其中集合R为如对称阵,Toeplitz阵等构成的线性子空间,或者对称半(ε)正定阵,(对称)非负阵等构成的闭凸集.给出了在相容条件下求解该问题的交替投影算法及算法收敛性分析.通过大量数值算例说明该算法的可行性和高效性,以及该算法较传统的矩阵形式的Krylov子空间方法(可行前提下)在迭代效率上的明显优势,本文也通过寻求加速技巧进一步提高算法的收敛速度.  相似文献   

16.
The semidefinite matrix completion(SMC) problem is to recover a low-rank positive semidefinite matrix from a small subset of its entries. It is well known but NP-hard in general. We first show that under some cases, SMC problem and S1/2relaxation model share a unique solution. Then we prove that the global optimal solutions of S1/2regularization model are fixed points of a symmetric matrix half thresholding operator. We give an iterative scheme for solving S1/2regularization model and state convergence analysis of the iterative sequence.Through the optimal regularization parameter setting together with truncation techniques, we develop an HTE algorithm for S1/2regularization model, and numerical experiments confirm the efficiency and robustness of the proposed algorithm.  相似文献   

17.
In this paper, we investigate a class of nonlinear complementarity problems arising from the discretization of the free boundary problem, which was recently studied by Sun and Zeng [Z. Sun, J. Zeng, A monotone semismooth Newton type method for a class of complementarity problems, J. Comput. Appl. Math. 235 (5) (2011) 1261–1274]. We propose a new non-interior continuation algorithm for solving this class of problems, where the full-Newton step is used in each iteration. We show that the algorithm is globally convergent, where the iteration sequence of the variable converges monotonically. We also prove that the algorithm is globally linearly and locally superlinearly convergent without any additional assumption, and locally quadratically convergent under suitable assumptions. The preliminary numerical results demonstrate the effectiveness of the proposed algorithm.  相似文献   

18.

In this paper, we propose a smoothing Levenberg-Marquardt method for the symmetric cone complementarity problem. Based on a smoothing function, we turn this problem into a system of nonlinear equations and then solve the equations by the method proposed. Under the condition of Lipschitz continuity of the Jacobian matrix and local error bound, the new method is proved to be globally convergent and locally superlinearly/quadratically convergent. Numerical experiments are also employed to show that the method is stable and efficient.

  相似文献   

19.
This paper presents a new neural network model for solving degenerate quadratic minimax (DQM) problems. On the basis of the saddle point theorem, optimization theory, convex analysis theory, Lyapunov stability theory and LaSalle invariance principle, the equilibrium point of the proposed network is proved to be equivalent to the optimal solution of the DQM problems. It is also shown that the proposed network model is stable in the sense of Lyapunov and it is globally convergent to an exact optimal solution of the original problem. Several illustrative examples are provided to show the feasibility and the efficiency of the proposed method in this paper.  相似文献   

20.
In this paper, by means of a new efficient identification technique of active constraints and the method of strongly sub-feasible direction, we propose a new sequential system of linear equations (SSLE) algorithm for solving inequality constrained optimization problems, in which the initial point is arbitrary. At each iteration, we first yield the working set by a pivoting operation and a generalized projection; then, three or four reduced linear equations with a same coefficient are solved to obtain the search direction. After a finite number of iterations, the algorithm can produced a feasible iteration point, and it becomes the method of feasible directions. Moreover, after finitely many iterations, the working set becomes independent of the iterates and is essentially the same as the active set of the KKT point. Under some mild conditions, the proposed algorithm is proved to be globally, strongly and superlinearly convergent. Finally, some preliminary numerical experiments are reported to show that the algorithm is practicable and effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号