首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Wearable textile strain sensors that can perceive and respond to human stimuli are an essential part of wearable electronics. Yet, the detection of subtle strains on the human body suffers from the low sensitivity of many existing sensors. Generally, the inadequate sensitivity originates from the strong structural integrity of the sensors because tiny external strains cannot trigger enough variation in the conducting network. Inspired by the rolling friction where the interaction is weakened by decreasing interface area, porous fibers made of graphene decorated with nanoballs are prepared via a prolonged phase‐separation process. This novel structure confers the graphene fibers with high gauge factors (51 in 0–5% and 87 in 5–8%), which is almost 10 times larger than the same structures without nanoballs. A low detection limit (0.01% strain) and good durability (over 6000 circles) are obtained. By the virtue of these qualities, these fiber‐based textile sensors can recognize a pulse wave and eyeball movement in real‐time while keeping comfortable wearing sense. Moreover, by weaving such fibers, the electronic fabrics with a specially designed structure can distinguish the multilocation in real time, which shows great potential as wearable electronics.  相似文献   

2.
Sensing strain of soft materials in small scale has attracted increasing attention. In this work, graphene woven fabrics (GWFs) are explored for highly sensitive sensing. A flexible and wearable strain sensor is assembled by adhering the GWFs on polymer and medical tape composite film. The sensor exhibits the following features: ultra‐light, relatively good sensitivity, high reversibility, superior physical robustness, easy fabrication, ease to follow human skin deformation, and so on. Some weak human motions are chosen to test the notable resistance change, including hand clenching, phonation, expression change, blink, breath, and pulse. Because of the distinctive features of high sensitivity and reversible extensibility, the GWFs based piezoresistive sensors have wide potential applications in fields of the displays, robotics, fatigue detection, body monitoring, and so forth.  相似文献   

3.
4.
5.
Owing to their small size, biocompatibility, unique and tunable photoluminescence, and physicochemical properties, graphene quantum dots (GQDs) are an emerging class of zero‐dimensional materials promising a wide spectrum of novel applications in bio‐imaging, optical, and electrochemical sensors, energy devices, and so forth. Their widespread use, however, is largely limited by the current lack of high yield synthesis methods of high‐quality GQDs. In this contribution, a facile method to electrochemically exfoliate GQDs from three‐dimensional graphene grown by chemical vapor deposition (CVD) is reported. Furthermore, the use of such GQDs for sensitive and specific detection of ferric ions is demonstrated.  相似文献   

6.
3D printed graphene aerogels hold promise for flexible sensing fields due to their flexibility, low density, conductivity, and piezo-resistivity. However, low printing accuracy/fidelity and stochastic porous networks have hindered both sensing performance and device miniaturization. Here, printable graphene oxide (GO) inks are formulated through modulating oxygen functional groups, which allows printing of self-standing 3D graphene oxide aerogel microlattice (GOAL) with an ultra-high printing resolution of 70 µm. The reduced GOAL (RGOAL) is then stuck onto the adhesive tape as a facile and large-scale strategy to adapt their functionalities into target applications. Benefiting from the printing resolution of 70 µm, RGOAL tape shows better performance and data readability when used as micro sensors and robot e-skin. By adjusting the molecular structure of GO, the research realizes regulation of rheological properties of GO hydrogel and the 3D printing of lightweight and ultra-precision RGOAL, improves the sensing accuracy of graphene aerogel electronic devices and realizes the device miniaturization, expanding the application of graphene aerogel devices to a broader field such as micro robots, which is beyond the reach of previous reports.  相似文献   

7.
Highly sensitive, wearable and durable strain sensors are vital to the development of health monitoring systems, smart robots and human machine interfaces. The recent sensor fabrication progress is respectable, but it is limited by complexity, low sensitivity and unideal service life. Herein a facile, cost‐effective and scalable method is presented for the development of high‐performance strain sensors and stretchable conductors based on a composite film consisting of graphene platelets (GnPs) and silicon rubber. Through calculation by the tunneling theory using experimental data, the composite film has demonstrated ideal linear and reproducible sensitivity to tensile strains, which is contributed by the superior piezoresistivity of GnPs having tunable gauge factors 27.7–164.5. The composite sensors fabricated in different days demonstrate pretty similar performance, enabling applications as a health‐monitoring device to detect various human motions from finger bending to pulse. They can be used as electronic skin, a vibration sensor and a human‐machine interface controller. Stretchable conductors are made by coating and encapsulating GnPs with polydimethyl siloxane to create another composite; this structure allows the conductor to be readily bent and stretched with sufficient mechanical robustness and cyclability.  相似文献   

8.
Promoted by the demand for wearable devices, graphene has been proved to be a promising material for potential applications in flexible and highly sensitive strain sensors. However, low sensitivity and complex processing of graphene retard the development toward the practical applications. Here, an environment‐friendly and cost‐effective method to fabricate large‐area ultrathin graphene films is proposed for highly sensitive flexible strain sensor. The assembled graphene films are derived rapidly at the liquid/air interface by Marangoni effect and the area can be scaled up. These graphene‐based strain sensors exhibit extremely high sensitivity with gauge factor of 1037 at 2% strain, which represents the highest value for graphene platelets at this small deformation so far. This simple fabrication for strain sensors with highly sensitive performance of strain sensor makes it a novel approach to applications in electronic skin, wearable sensors, and health monitoring platforms.  相似文献   

9.
Recently, macroporous graphene monoliths (MGMs), with ultralow density and good electrical conductivity, have been considered as excellent pressure sensors due to their excellent elasticity with a rapid rate of recovery. However, MGMs can only exhibit good sensitivity when the strain is higher than 20%, which is undesirable for touch‐type pressure sensors, such as artificial skin. Here, an innovative method for the fabrication of freestanding flexible graphene film with bubbles decorated on honeycomb‐like network is demonstrated. Due to the switching effect depended on “point‐to‐point” and “point‐to‐face” contact modes, the graphene pressure sensor has an ultrahigh sensitivity of 161.6 kPa?1 at a strain less than 4%, several hundred times higher than most previously reported pressure sensors. Moreover, the graphene pressure sensor can monitor human motions such as finger bending and pulse with a very low operating voltage of 10 mV, which is sufficiently low to allow for powering by energy‐harvesting devices, such as triboelectric generators. Therefore, the high sensitivity, low operating voltage, long cycling life, and large‐scale fabrication of the pressure sensors make it a promising candidate for manufacturing low‐cost artificial skin.  相似文献   

10.
Stretchable electronics have recently been extensively investigated for the development of highly advanced human‐interactive devices. Here, a highly stretchable and sensitive strain sensor is fabricated based on the composite of fragmentized graphene foam (FGF) and polydimethylsiloxane (PDMS). A graphene foam (GF) is disintegrated into 200–300 μm sized fragments while maintaining its 3D structure by using a vortex mixer, forming a percolation network of the FGFs. The strain sensor shows high sensitivity with a gauge factor of 15 to 29, which is much higher compared to the GF/PDMS strain sensor with a gauge factor of 2.2. It is attributed to the great change in the contact resistance between FGFs over the large contact area, when stretched. In addition to the high sensitivity, the FGF/PDMS strain sensor exhibits high stretchability over 70% and high durability over 10 000 stretching‐releasing cycles. When the sensor is attached to the human body, it functions as a health‐monitoring device by detecting various human motions such as the bending of elbows and fingers in addition to the pulse of radial artery. Finally, by using the FGF, PDMS, and μ‐LEDs, a stretchable touch sensor array is fabricated, thus demonstrating its potential application as an artificial skin.  相似文献   

11.
Reduced graphene oxide (RGO) films are promising in applications ranging from electronics to flexible sensors. Though high electrical and thermal conductivities have been reported for RGO films, existing thermal conductivity data for RGO films show large variations from 30 to 2600 W m?1 K?1. Further, there is a lack of data at low temperatures (<300 K), which is critical for the understanding of thermal transport mechanisms. In this work, a temperature‐dependent study of thermal (10–300 K) and electrical (10–3000 K) transport in annealed RGO films indicates the potential application of RGO films for sensing temperatures across an extremely wide range. The room‐temperature thermal conductivity increases significantly from 46.1 to 118.7 W m?1 K?1 with increasing annealing temperature from 1000 to 3000 K with a corresponding increase in the electrical conductivity from 5.2 to 1481.0 S cm?1. In addition, films reduced at 3000 K are promising for sensing extreme temperatures as demonstrated through the measured electrical resistivity from 10 to 3000 K. Sensors based on RGO films are advantageous over conventional temperature sensors due to the wide temperature range and flexibility. Thus, this material is useful in many applications including flexible electronics and thermal management systems.  相似文献   

12.
Transparent, stretchable films of carbon nanotubes (CNTs) have attracted significant attention for applications in flexible electronics, while the lack of structural strength in CNT networks leads to deformation and failure under high mechanical load. In this work, enhancement of the strength and load transfer capabilities of CNT networks by chemical vapor deposition of graphene in the nanotube voids is proposed. The graphene hybridization significantly strengthens the CNT networks, especially at nanotube joints, and enhances their resistance to buckling and bundling under large cyclic strain up to 20%. The hybridized films show linear and reproducible responses to tensile strains, which have been applied in strain sensors to detect human motions with fast response, high sensitivity, and durability.  相似文献   

13.
王冬  秦亚飞  袁锐波  杨友朋 《半导体光电》2020,41(5):676-680, 716
以石墨烯作为压力传感器敏感材料,Si为基底材料,氮化硼(PN)为石墨烯保护材料,惠斯通测量电桥作为力电变换测量电路,构建了硅基石墨烯压力传感器。通过鼓泡实验法建立传感器的理论模型,分析了传感器的压力与中心形变位移之间的关系,并结合ANSYS软件静力学非线性分析单元,针对所述石墨烯薄膜的挠度形变特性进行了数值解析与有限元仿真。结果表明,石墨烯薄膜压力与挠度形变的理论分析与仿真结果相吻合,这为石墨烯压力传感器提供了结构设计与理论模型基础。  相似文献   

14.
Fabrication of nanostructured graphene (Gr) for gas sensing applications has become increasingly attractive. For the first time, 3D graphene flowers (GF) cluster patterns are grown directly on an Ni foam substrate by inexpensive homebuilt microwave plasma‐enhanced chemical vapor deposition (MPCVD) using the gas mixture H2/C2H4O2@Ar as a precursor. The interim morphologies of the synthesized GF are investigated and the growth mechanism of the GF film is proposed. The GF are decomposed to few‐layer Gr sheets by ultrasonication in ethanol. For the first time, MPCVD‐synthesized Gr is exploited to fabricate a gas sensor that exhibits an ultrahigh sensitivity of 133.2 ppm?1 to NO2. Outstanding sensor responses of 1411% and 101% to 10 ppm and 200 ppb NO2, respectively, are achieved. Furthermore, a low theoretical detection limit of 785 ppt NO2 is achieved. An ultrafast (within 2 s) recovery is observed at room temperature, and an imbedded microheater is employed to improve the selectivity of NO2 detection relative to humidity. This work represents a simple, clean, and efficient route to synthesize large‐area cauliflower Gr for gas detection with high performance, including ultrahigh sensitivity, good selectivity, fast recovery, and reversibility.  相似文献   

15.
Stretchable/wearable strain sensors are attracting growing interest due to their broad applications in physical and physiological measurements. However, the development of a multifunctional highly stretchable sensor satisfying the requirements of ultrahigh sensitivity (able to distinguish sound frequency) remains a challenge. An ultrasensitive and highly stretchable multifunctional strain sensor with timbre‐recognition ability based on high‐crack‐density vertical graphene (VGr) is fabricated using an ultrasonic peeling (UP) method. It can distinguish frequencies of sounds higher than 2500 Hz. Detailed microscopic examinations reveal that their ultrahigh sensitivity stems from the formation of high‐density nanocracks in the graphitic base layer, which is bridged by the top branched VGr nanowalls. These nanocracks cut the VGr film into a large number of nanopieces, which increase the natural frequency of the sensors, enabling the sensors to distinguish the sound frequency. Demonstrations are presented to highlight the sensors' potential as wearable devices for human physiological signal and timbre detections. This is the first multifunctional highly stretchable strain sensor with timbre‐recognition ability.  相似文献   

16.
A novel and highly versatile synthetic route for the production of functionalized graphene dispersions in water, acetone, and isopropanol (IPA), which exhibit long‐term stability and are easy to scale up, is reported. Both graphene functionalization (wherein the oxygen content can be varied from 4 to 16 wt%) and dispersion are achieved by the thermal reduction of graphite oxide, followed by a high‐pressure homogenization (HPH) process. For the first time, binders, dispersing agents, and reducing agents are not required to produce either dilute or highly concentrated dispersions of single graphene sheets with a graphene content of up to 15 g L?1. High graphene content is essential for the successful printing of graphene dispersions by 3D microextrusion. Free‐standing graphene films and micropatterned graphene materials are successfully prepared using this method. Due to the absence of toxic reducing agents, the graphene exhibits no cytotoxicity and is biocompatible. Furthermore, the electrical conductivity of graphene is significantly improved by the absence of binders. Flexible microarrays can be printed on different substrates, producing microarrays that are mechanically stable and can be bent several times without affecting electrical conductivity.  相似文献   

17.
The integration of nanomaterials with high conductivity into stretchable polymer fibers can achieve novel functionalities such as sensing physical deformations. With a metallic conductivity that exceeds other solution‐processed nanomaterials, 2D titanium carbide MXene is an attractive material to produce conducting and stretchable fibers. Here, a scalable wet‐spinning technique is used to produce Ti3C2Tx MXene/polyurethane (PU) composite fibers that show both conductivity and high stretchability. The conductivity at a very low percolation threshold of ≈1 wt% is demonstrated, which is lower than the previously reported values for MXene‐based polymer composites. When used as a strain sensor, the MXene/PU composite fibers show a high gauge factor of ≈12900 (≈238 at 50% strain) and a large sensing strain of ≈152%. The cyclic strain sensing performance is further improved by producing fibers with MXene/PU sheath and pure PU core using a coaxial wet‐spinning process. Using a commercial‐scale knitting machine, MXene/PU fibers are knitted into a one‐piece elbow sleeve, which can track various movements of the wearer's elbow. This study establishes fundamental insights into the behavior of MXene in elastomeric composites and presents strategies to achieve MXene‐based fibers and textiles with strain sensing properties suitable for applications in health, sports, and entertainment.  相似文献   

18.
Currently, most customized hydrogels can only be processed via extrusion-based 3D printing techniques, which is limited by printing efficiency and resolution. Here, a simple strategy for the rapid fabrication of customized hydrogels using a photocurable 3D printing technique is presented. This technique has been rarely used because the presence of water increases the molecular distance between the polymer chains and reduces the monomer polymerization rate, resulting in the failure of rapid solid-liquid separation during printing. Although adding cross-linkers to printing inks can effectively accelerate 3D cross-linked network formation, chemical cross-linking may result in reduced toughness and self-healing ability of the hydrogel. Therefore, an interpenetrated-network hydrogel based on non-covalent interactions is designed to form physical cross-links, affording fast solid-liquid separation. Poly(acrylic acid (AA)-N-vinyl-2-pyrrolidone (NVP)) and carboxymethyl cellulose (CMC) are cross-linked via Zn2+-ligand coordination and hydrogen bonding; the resulting mixed AA-NVP/CMC solution is used as the printing ink. The printed poly(AA-NVP/CMC) hydrogel exhibited high tensile toughness (3.38 MJ m−3) and superior self-healing ability (healed stress: 81%; healed strain: 91%). Some objects like manipulator are successfully customized by photocurable 3D printing using hydrogels with high toughness and complex structures. This high-performance hydrogel has great potential for application in flexible wearable sensors.  相似文献   

19.
On-body strain information provides various indicators such as heart rate, physiological pulse, voice waveform, respiratory rate, and body motion status. Recent advances in wearable strain sensors using nanomaterials have significantly enhanced sensor performance with regard to sensitivity, detectable range, and response time. However, it is still challenging to obtain all types of body strain information, from small vibrations to joint movements, using one type of sensor. Herein, a full-range on-body strain (FROS) sensor covering ultrasmall-to-large strains such as vocal vibration and joint movement is reported. To achieve an ultrawide detectable range, reduced graphene oxide (rGO)-embedded laser-induced graphene (LIG) is synthesized by laser engraving on a graphene oxide (GO)-embedded polyimide (PI) complex film. An rGO-LIG homostructure based on sp2-carbons is photothermally reconstructed from the GO-PI heterostructure in a complex film by in situ co-transformation and then transferred to an elastomer substrate. The fabricated FROS sensor successfully performs on-body strain monitoring of various indicators, such as physiological pulse, vocal sound waveform, and body movement, as well as American sign language translation. Furthermore, it is believed that this rGO-LIG homostructure-based material synthesized by in situ co-transformation can potentially provide novel functionalities in fields such as wearable electronics, humanoid, soft robotics, and intelligent prosthetics.  相似文献   

20.
研究了光纤光栅(FBG)应变传感器的封装与安装工艺对温度交叉敏感特性的影响。基于弹性力学理论对表面粘贴式和表面螺栓安装式两种典型的FBG应变传感器封装形式的交叉敏感机理进行了理论分析,并对国内几家主要的FBG传感器生产商的产品进行了测试。测试结果表明,表面粘贴式FBG应变传感器的温度交叉敏感性要大于表面安装式FBG应变传感器,与理论分析的结果相符。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号