首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Results of numerical modeling of the kinetics of reaction of binding of nitrogen at mechanochemical disintegration of water solutions are illustrated. Experimental data of kinetics of more than fifty reactions which in many cases are different from Arrhenius kinetics were used in calculations. It is found that the main channel of nitrogen fixation is the formation of nitrocompounds, but in the presence of small amount of hydrogen the change to the channel of ammonia formation becomes possible.  相似文献   

2.
The gas in contact with polyethylene has considerable impact on its oxidation. The rate of oxidation product formation is mostly larger with oxygen blanketing than in air. Similarly, the rate in air is larger than that under nitrogen blanketing. Moreover, the relative effect of the surrounding gas is depending heavily on the particular oxidation product considered. The effect on the alcohol concentration on passing from air to pure oxygen is the same as that on the hydroperoxide concentration. It is only under pure nitrogen that alcohol formation is relatively more affected than hydroperoxide formation. The overall carbonyl groups as well as the ketones show the expected ranking, i.e. faster rate in pure oxygen than in air and faster rate in air than under pure nitrogen. However, carboxylic acids are formed much faster in oxygen than in air. For the acids the results in air and under nitrogen are significantly closer in the initial stages of processing than the results obtained under pure oxygen. This is different for γ-lactones for which formation is faster in oxygen than in air where it is faster than under nitrogen. With trans-vinylene groups the situation is opposite to that observed for carboxylic acids: the rate of formation is close for the experiments performed under air and under oxygen and significantly faster than under nitrogen. The results for hydroperoxides, alcohols and ketones are easily interpreted taking into account the kinetics developed in previous work. Fitting the data to the heterogeneous kinetics shows the effect of the oxygen concentration on this kinetics. It is especially unexpected with respect to its impact on the initiation rate. It is discussed taking into account various possibilities. The only one that is compatible with all the data envisages chain initiation resulting from interaction of oxygen with strained polymer molecules.  相似文献   

3.
The bimolecular single collision reaction potential energy surface of an isocyanate NCO radical with a ketene CH2CO molecule was investigated by means of B3LYP and QCISD(T) methods. The computed results indicate that two possible reaction channels exist on the surface. One is an addition-elimination reaction process, in which the CH2CO molecule is attacked by the nitrogen atom at its methylene carbon atom to lead to the formation of the intermediate OCNCH2CO followed by a C-C rupture channel to the products CH2NCO+CO. The other is a direct hydrogen abstraction channel from CHzCO by the NCO radical to afford the products HCCO+HNCO. Because of a higher barrier in the hydrogen abstraction reaction than in the addition-elimination reaction, the direct hydrogen abstraction pathway can only be considered as a secondary reaction channel in the reaction kinetics of NCO+ CH2CO. The predicted results are in good agreement with previous experimental and theoretical investigations.  相似文献   

4.
We observed the formation of aerosol particles in CS2 vapour irradiated by 337 nm nitrogen laser light. Various interesting features of the kinetics of the formation process are reported. The chemical nature of the photoreaction products giving rise to the formation of aerosol particles is also discussed.  相似文献   

5.
The bond energy scheme is extended to nitrogen compounds by correlating experimental thermochemical data reviewed to 1980. Heats of formation and atomization energy terms are provided for bonds of nitrogen with other elements: H, C, O, N, S, and halogens. An overall precision of 3 kcal/mol was attainable at the best, which is rather low for chemical reaction kinetics purpose. This is attributable mainly to the intrinsically unpredictable bond energies of the nitrogen atom due to the “lone-pair” electrons participation in the valence bonding, rendering nitrogen bonds specific and less transferable. The nearest-neighbor interactions on nitrogen atom are also severe but predictable if sufficient energy terms are generated. The concept of ring strain in five-membered rings (about 5 × 2 kcal/mol in the background of thermochemical data) has been reviewed and amended by providing a special set of energy terms for the (C, O, N, S) -ring skeleton which is considered strain-free if the hydrogen atom is the only substituent. Heats of formation of some common molecular structures are predicted.

Heats of formation of nitrogen-containing polymers and heats of polymer-forming and polymer-modification reactions are estimated and compared with available calorimetric data.  相似文献   

6.
Literary data on kinetics, catalysis and inhibition of the oxidation reaction of carbonyl compounds with peroxy acids according to the Baeyer—Villiger reaction under aerobic liquidphase oxidation conditions have been considered and discussed. The main reaction channel involves a reversible formation of α-hydroxyperoxy ester and its rearrangement to an ester or a lactone. In the case of homolytic decomposition of α-hydroxyperoxy ester no esters are formed. At all steps the formation and transformation of α-hydroxyperoxy ester are catalyzed by carboxylic acids. The possibility of formation of the second intermediate, presumably dioxirane, is shown. Catalysts of the oxidation processes such as variable-valency metal salts influence the kinetics at all steps in the Baeyer—Villiger reaction. Inhibition of ester formation in the presence of cobalt and manganese salts is associated with catalysis of homolytic decomposition of peroxy acid and α-hydroxyperoxy ester.  相似文献   

7.
Summary Thermogravimetry was used to study the kinetics of isothermal degradation of an epoxy thermoset powder coating in a nitrogen atmosphere and in oxidizing atmospheres of air and pure oxygen. An integral isoconversional procedure was used to analyse how the activation energy varies depending on the degree of conversion and depending on the atmospheres used. In the case of degradation in a nitrogen atmosphere, in addition to the activation energy, the kinetic triplet was completed using an Avrami reaction model and the pre-exponential factor. With this atmosphere, the conclusion was reached that the isothermal and non-isothermal kinetics are equivalent. It was shown that the thermooxidative degradation process is more complex and consists of a two-stage process. The first stage of degradation is similar whether nitrogen, oxygen or air are present. Chain scission occurs and it seems that there is formation of thermally more stable compounds. The second stage of degradation, involving several phenomena, occurs only in the presence of oxygen or air and leads to the total disappearance of the organic material by thermooxidation. These stages are very similar under non-isothermal or isothermal conditions.  相似文献   

8.
The kinetics of acrylonitrile polymerization initiated by butane-l,4-diol-Ce(IV) redox system have been studied in aqueous sulfuric acid in the range 30 to 40°C under nitrogen. There is no experimental evidence for the formation of a complex between diol and oxidant; the kinetics are consistent with a linear mode of termination. The effect of certain neutral salts, acids, water-miscible organic solvents, and temperature on the rate of polymerization and the rate of metal ion disappearance have also been investigated. Various rate and energy parameters have been evaluated.  相似文献   

9.
In electron-transfer reactions, the change in the oxidation states of the reactants is generally accompanied by structural changes, which influence the electron-transfer kinetics. Previous studies on the systems of Cu(II)/(I) complexes involving cyclic tetrathiaether ligands indicated that inversion of coordinated donor atoms is a major geometric change during the overall electron-transfer process. Complex formation and isomerization studies on complexes with the 1,4,8,11-tetraazacyclotetradecane ligand have demonstrated that a necessary condition for conformational change is deprotonation followed by inversion of coordinated N atoms. When one or more nitrogen donor atoms in a ligand are replaced with sulfur, there is a choice of N or S inversion. It has been hypothesized that donor atom inversion (N or S donors) is a major factor that can lead to conformationally limited electron-transfer kinetics of copper systems. In the current study, the thermodynamic properties, electron-transfer kinetics and conformational changes in copper(II)[1,4,8-trithia-11-azacyclotetradecane], copper(II)[1,8-dithia-4,11-diazacyclotetradecane] and copper(II)[1,11,-dithia-4,8-diazacyclotetradecane] were determined in order to determine the effect of inversion of coordinated N atoms on electron-transfer rates as a function of low concentrations of water in an aprotic solvent (acetonitrile). By using controlled amounts of water as a hydrogen ion acceptor, deprotonation of amine nitrogen and nitrogen donor inversion was followed by comparing self-exchange rate constants for reduction and oxidation of the copper complexes. Data on thermodynamic properties and electron-transfer kinetics are presented. Possible conformational changes and kinetic pathways for complexes with ligands having mixed N and S donor sets are presented.  相似文献   

10.
The effects of three nitrogen additives (urea, guanidine carbonate, and melamine formaldehyde) on the flame retardant action of cotton cellulose treated with tributyl phosphate (TBP) were investigated in this research. The limiting oxygen index (LOI) of treated cotton cellulose clearly revealed the synergistic interactions of TBP and nitrogen compounds. The Kissinger method was used to evaluate the kinetics of thermal decomposition on treated cellulose. The results show that adding nitrogen additives increases the activation energy at a higher degree of degradation, thus indicating better thermal stability at higher temperatures. Scanning electron microscope pictures of chars formed after a LOI test show the formation of protective polymeric coatings on char surfaces. Evaluating char surfaces using attenuated total reflectance-Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy suggests that these coatings are composed of species containing phosphorus-nitrogen-oxygen. Possible chemical interactions of phosphorus and nitrogen compounds during the burning process and the formation of a protective coating could be the reason for the observed synergism. Potential reaction pathways contributing to the formation of this protective polymeric coating have also been proposed.  相似文献   

11.
The kinetics of channel formation by the polyene-like antibiotic monazomycin, both in a bilayer lipid membrane (BLM) and in a tethered BLM (tBLM), and by the peptide melittin in a tBLM, is investigated. Stepping the applied potential from a value at which channels are not formed to one at which they are formed yields current vs time curves that are sigmoidal on a BLM, while they show a maximum on a tBLM; in the latter case, sigmoidal curves are obtained by plotting the charge against time. These curves are interpreted on the basis of a general kinetic model, which accounts for the potential-dependent penetration of adsorbed monomeric molecules into the lipid bilayer, followed by their aggregation with channel formation by a mechanism of nucleation and growth. In the case of monazomycin, which is present in the solution in the form of relatively hydrophilic clusters and is adsorbed as such on top of the lipid bilayer, penetration into the bilayer following a potential jump is assumed to be preceded by a potential-independent disaggregation of the adsorbed clusters into adsorbed monomers.  相似文献   

12.
In this article, we briefly review the recent experimental studies of the multiple channel dynamics of the O((1)D) reaction with alkane molecules using the significantly improved universal crossed molecular beam technique. In these reactions, the dominant reaction mechanism is found to be an O atom insertion into the C-H bond, while a direct abstraction mechanism is also present in the OH formation channel. While the reaction mechanism is similar for all of these reactions, the product channels are quite different because of the significantly different energetics of these reaction channels. In the O((1)D) reaction with methane, OH formation is the dominant process while H atom formation is also a significant process. In the O((1)D) reaction with ethane, however, the CH(3) + CH(2)OH is the most important process, OH formation is still significant and H atom formation is of minor importance. A new type of O atom insertion mechanism (insertion into a C-C bond) is also inferred from the O((1)D) reaction with cyclopropane. Through these comprehensive studies, complete dynamical pictures of many multiple channel chemical reactions could be obtained. Such detailed studies could provide a unique bridge between dynamics and kinetics research.  相似文献   

13.
The urea complex of manganese was synthesized and its structure established to be [Mn(Urea)(H2O)3Cl2] from elemental analyses, IR and UV and visible spectroscopy and magnetic susceptibility measurements. The thermal behaviour has been studied by thermogravimetry (TG) in nitrogen and air atmospheres and differential thermal analysis (DTA) in air. TG analysis shows three main steps of decomposition leading to oxide formation in the final stage when the complex is heated in air, and MnCl2 formation when it is heated in nitrogen. The kinetics of decomposition of the complex have been studied. Plots of the Coats—Redfern equation show two breaks from which three values of the activation energy are reported. From the results, it is concluded that decomposition of the complex is a heterogeneous process.  相似文献   

14.
The mechanisms for the conversion of molecular tritium gas to tritiated water are examined for tritium mixtures with (1) oxygen and nitrogen, (2) oxygen and argon, and (3) water and helium, for which previous experimental data exist. By analyzing results of these experiments in light of the radiation chemistry involved in a mixture of tritium and other gases, an understanding of the conversion mechanisms is reached. The formation of H and/or OH free radicals as intermediate species is of particular significance in the formation of HTO in that these radicals initiate a number of reactions which lead to the formation of water. These reactions are analyzed in terms of steady-state kinetics to obtain predictive models which can be judged against the experimental observations. For the three experimentally observed mixtures, model agreement is found to be within a factor of 2–3.  相似文献   

15.
Film formation and capillary condensation of nitrogen at 78 K on the mesoporous controlled pore glass CPG-10-75 have been studied at certain relative pressures by in situ small-angle neutron scattering. On desorption ramified clusters of vapor filled voids have been observed, but not on adsorption. The kinetics of adsorption and desorption have been followed. The experimental results are discussed with respect to recent theoretical studies of fluids in complex pore systems.  相似文献   

16.
Proton transfer in bacteriorhodopsin from the cytoplasm to the extracellular side is initiated from protonated asp96 in the cytoplasmic region toward the deprotonated Schiff base. This occurs in the transition from the photocycle late M state to the N state. To investigate this proton-transfer process, a quantum mechanics/molecular mechanics (QM/MM) model is constructed from the bacteriorhodopsin E204Q mutant crystal structure. Three residues, asp96, asp85, and thr89, as well as most of the retinal chromophore and the Schiff base link of lys216 are treated quantum mechanically and connected to the remaining classical protein through linker atom hydrogens. Structural transformation in the M state results in the formation of a water channel between the Schiff base and asp96. Since a part of this channel is lined with hydrophobic residues, there has been a question on the mechanism of proton transfer in a hydrophobic channel. Ab initio dynamics using the CHARMM/GAMESS methodology is used to simulate the transfer of the proton through a partially hydrophobic channel. Once sufficient water molecules are added to the channel to allow the formation of a single chain of waters from asp96 to the Schiff base, the transfer occurs as a fast (less than a picosecond) concerted event irrespective of the protonation state of asp85. Dynamic transfer of the proton from asp96 to the nearest water initiates the organization of a strongly bonded water chain conducive to the transfer of the proton to the Schiff base nitrogen.  相似文献   

17.
Ti–Si–B–C–N film was deposited by DC magnetron sputtering at different argon and nitrogen ratios such as N2/Ar = 1 : 5, 2 : 4, 3 : 3, 4 : 1 and 5 : 0. The formation of TiN and TiB phases was observed because of incorporation of nitrogen. The hardness, modulus, microstructure, structure and bond formation with different nitrogen contents during the deposition were studied by nanoindentation, scanning electron microscope, X‐ray diffraction and X‐ray photoelectron spectroscopy, respectively. The oxidation kinetics of Ti–Si–B–C–N was investigated. The nitrogen incorporation during deposition influences different properties of the coating. Hardness and modulus decreased, and microstructure showed very fine grain presence, and film changes to fully amorphous because of incorporation of nitrogen in the film. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The reactivity and decomposition kinetics on the C(7)H(6) potential energy surface (PES) were investigated, determining structures of stationary points at the B3LYP/6-31+G(d,p) level and energies at the CCSD(T)/cc-pVTZ level with extension to the complete basis set limit. For the reactions characterized by a significant multireference character, the energies were calculated at the CASPT2/cc-pVTZ level. The portion of the PES investigated consisted of 27 wells connected by 39 saddle points. Of the 27 wells, 16 can be accessed through transition states having activation energies smaller than the dissociation threshold. In agreement with previous theoretical studies, it was found that the main interconversion channel takes place on the singlet PES and connects phenylcarbene, cycloheptatetrane, spiroheptatriene, fulvenallene, and three ethynylcyclopentadiene isomers. Two new mechanisms are proposed for the formation of 5-ethynylcyclopentadiene and for the conversion of spiroheptatriene to fulvenallene. The unimolecular decomposition kinetics was thoroughly investigated. It was found that the fastest high pressure decomposition channel, at the temperatures at which C(7)H(6) undergoes unimolecular decomposition (1500--2000 K), leads to the formation of cyclopentadienylidene and acetylene. The rate of crossing from the singlet to the triplet PES may affect considerably this reaction channel, as it is formally spin forbidden. The alternative pathway, which is the decomposition to fulvenallenyl, is however only a factor of 2--3 slower and significantly less activated (82 vs 96 kcal/mol).  相似文献   

19.
The thermodynamics and kinetics for the monofunctional binding of nitrogen mustard class of anticancer drugs to purine bases of DNA were studied computationally using guanine and adenine as model substrates. Mechlorethamine and melphalan are used as model systems in order to better understand the difference in antitumor activity of aliphatic and aromatic mustards, respectively. In good agreement with experiments that suggested the accumulation of a reactive intermediate in the case of mechlorethamine, our model predicts a significant preference for the formation of corresponding aziridinium ion for mechlorethamine, while the formation of the aziridinium ion is not computed to be preferred when melphalan is used. Two effects are found that contribute to this difference. First, the ground state of the drug shows a highly delocalized lone pair on the amine nitrogen of the melphalan, which makes the subsequent cyclization more difficult. Second, because of the aromatic substituent connected to the amine nitrogen of melphalan, a large energy penalty has to be paid for solvation. A detailed study of energy profiles for the two-step mechanism for alkylation of guanine and adenine was performed. Alkylation of guanine is ~6 kcal mol(-1) preferred over adenine, and the factors contributing to this preference were explained in our previous study of cisplatin binding to purine bases. A detailed analysis of energy profiles of mechlorethamine and melphalan binding to guanine and adenine are presented to provide an insight into rate limiting step and the difference in reactivity and stability of the intermediate in both nitrogen mustards, respectively.  相似文献   

20.
The kinetics and mechanism of the ferrate(VI) oxidation of hydroxylamines   总被引:1,自引:0,他引:1  
Aqueous solutions of potassium ferrate(VI) cleanly and rapidly oxidize hydroxylamine to nitrous oxide, N-methylhydroxylamine to nitrosomethane, N-phenylhydroxylamine to nitrosobenzene, and O-methylhydroxylamine to methanol and nitrogen. The kinetics show first-order behavior with respect to each reactant and a two term component representing acid dependent and independent pathways. A general mechanism involving intermediate formation coupled with a two-electron oxidation is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号