首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Given a continuous sublinear operator P: VC(X) from a Hausdorff separable locally convex space V to the Banach space C(X) of continuous functions on a compact set X we prove that the subdifferential ∂P at zero is operator-affinely homeomorphic to the compact subdifferential c Q, i.e., the subdifferential consisting only of compact linear operators, of some compact sublinear operator Q: ł2C(X) from a separable Hilbert space ł2, where the spaces of operators are endowed with the pointwise convergence topology. From the topological viewpoint, this means that the space L c 2, C(X)) of compact linear operators with the pointwise convergence topology is universal with respect to the embedding of the subdifferentials of sublinear operators of the class under consideration.  相似文献   

2.
Let SB(X,Y) be the set of the bounded sublinear operators from a Banach space X into a Banach lattice Y. Consider π2(X,Y) the set of 2-summing sublinear operators. We study in this paper a variation of Grothendieck's theorem in the sublinear operators case. We prove under some conditions that every operator in SB(C(K),H) is in π2(C(K),H) for any compact K and any Hilbert H. In the noncommutative case the problem is still open.  相似文献   

3.
Let X be a completely regular Hausdorff space and E be a locally convex Hausdorff space. Then Cb(X) ? E is dense in (Cb(X, E), β0), (Cb(X), β) ??E = (Cb(X) ? E, β) and (Cb(X), β1) ??E = (Cb(X) ? E, β1). For a separable space E, (Cb(X, E), β0) is separable if and only if X is separably submetrizable. As a corollary, for a locally compact paracompact space X, if (Cb(X, E), β0) is separable, then X is metrizable.  相似文献   

4.
A Hilbert bundle (p, B, X) is a type of fibre space p: BX such that each fibre p?1(x) is a Hilbert space. However, p?1(x) may vary in dimension as x varies in X, even when X is connected. We give two “homotopy” type classification theorems for Hilbert bundles having primarily finite dimensional fibres. An (m, n)-bundle over the pair (X, A) is a Hilbert bundle over (p, B, X) such that the dimension of p?1(x) is m for x in A and n otherwise. As a special case, we show that if X is a compact metric space, C+X the upper cone of the suspension SX, then the isomorphism classes of (m, n)-bundles over (SX, C+X) are in one-to-one correspondence with the members of [X, Vm(Cn)] where Vm(Cn) is the Stiefel manifold. The results are all applicable to the classification of separable, continuous trace C1-algebras, with specific results given to illustrate.  相似文献   

5.
A metric space (X,d) has the Haver property if for each sequence ?1,?2,… of positive numbers there exist disjoint open collections V1,V2,… of open subsets of X, with diameters of members of Vi less than ?i and covering X, and the Menger property is a classical covering counterpart to σ-compactness. We show that, under Martin's Axiom MA, the metric square (X,d)×(X,d) of a separable metric space with the Haver property can fail this property, even if X2 is a Menger space, and that there is a separable normed linear Menger space M such that (M,d) has the Haver property for every translation invariant metric d generating the topology of M, but not for every metric generating the topology. These results answer some questions by L. Babinkostova [L. Babinkostova, When does the Haver property imply selective screenability? Topology Appl. 154 (2007) 1971-1979; L. Babinkostova, Selective screenability in topological groups, Topology Appl. 156 (1) (2008) 2-9].  相似文献   

6.
We prove that there is the universal space for the class of n-dimensional separable metric spaces in the Cartesian product K1×?×Kn+1 of Peano curves without free arcs. It is also shown that the set of embeddings of any n-dimensional separable metric space X into this universal space is a residual set in C(X,K1×?×Kn+1). Other properties of product of Peano curves without free arcs are also proved.  相似文献   

7.
Let X be a Banach space. We say that X satisfies the fixed point property (weak fixed point property) if every non-expansive mapping defined from a convex closed bounded (convex weakly compact) subset of X into itself has a fixed point. We say that X satisfies the stable fixed point property (stable weak fixed point property) if the same is true for every equivalent norm which is close enough to the original one. Denote by P(X) the set formed by all equivalent norms with the topology of the uniform convergence on the unit ball of X. We prove that the subset of P(X) formed by the norms failing the fixed point property is dense in P(X) when X is a non-distortable space which fails the fixed point property. In particular, no renorming of ?1 can satisfy the stable fixed point property. Furthermore, we show some examples of distortable spaces failing the weak fixed point property, which can be renormed to satisfy the stable weak fixed point property. As a consequence we prove that every separable Banach space can be renormed to satisfy the stable weak fixed point property.  相似文献   

8.
Let U and V be convex and balanced open subsets of the Banach spaces X and Y, respectively. In this paper we study the following question: given two Fréchet algebras of holomorphic functions of bounded type on U and V, respectively, that are algebra isomorphic, can we deduce that X and Y (or X* and Y*) are isomorphic? We prove that if X* or Y* has the approximation property and Hwu(U) and Hwu(V) are topologically algebra isomorphic, then X* and Y* are isomorphic (the converse being true when U and V are the whole space). We get analogous results for Hb(U) and Hb(V), giving conditions under which an algebra isomorphism between Hb(X) and Hb(Y) is equivalent to an isomorphism between X* and Y*. We also obtain characterizations of different algebra homomorphisms as composition operators, study the structure of the spectrum of the algebras under consideration and show the existence of homomorphisms on Hb(X) with pathological behaviors.  相似文献   

9.
A space Y is called an extension of a space X if Y contains X as a dense subspace. Two extensions of X are said to be equivalent if there is a homeomorphism between them which fixes X point-wise. For two (equivalence classes of) extensions Y and Y of X let Y?Y if there is a continuous function of Y into Y which fixes X point-wise. An extension Y of X is called a one-point extension of X if Y?X is a singleton. Let P be a topological property. An extension Y of X is called a P-extension of X if it has P.One-point P-extensions comprise the subject matter of this article. Here P is subject to some mild requirements. We define an anti-order-isomorphism between the set of one-point Tychonoff extensions of a (Tychonoff) space X (partially ordered by ?) and the set of compact non-empty subsets of its outgrowth βX?X (partially ordered by ⊆). This enables us to study the order-structure of various sets of one-point extensions of the space X by relating them to the topologies of certain subspaces of its outgrowth. We conclude the article with the following conjecture. For a Tychonoff spaces X denote by U(X) the set of all zero-sets of βX which miss X.
Conjecture. For locally compact spaces X and Y the partially ordered sets(U(X),⊆)and(U(Y),⊆)are order-isomorphic if and only if the spacesclβX(βX?υX)andclβY(βY?υY)are homeomorphic.  相似文献   

10.
It is known that the algebra of Schur operators on ?2 (namely operators bounded on both ?1 and ?) is not inverse-closed. When ?2=?2(X) where X is a metric space, one can consider elements of the Schur algebra with certain decay at infinity. For instance if X has the doubling property, then Q. Sun has proved that the weighted Schur algebra Aω(X) for a strictly polynomial weight ω is inverse-closed. In this paper, we prove a sharp result on left-invertibility of the these operators. Namely, if an operator AAω(X) satisfies ‖Afp?‖fp, for some 1?p?∞, then it admits a left-inverse in Aω(X). The main difficulty here is to obtain the above inequality in ?2. The author was both motivated and inspired by a previous work of Aldroubi, Baskarov and Krishtal (2008) [1], where similar results were obtained through different methods for X=Zd, under additional conditions on the decay.  相似文献   

11.
Banach spaces X whose duals are isomorphic or isometric to l1(Γ) are characterized by certain classes of operators on X. It is proved that a separable, conjugate space isomorphic to a complemented subspace of an L1(S, Σ, μ) space is isomorphic to l1; a L1 space contained in a separable, conjugate space is isomorphic to a subspace of l1.  相似文献   

12.
We prove the Bishop-Phelps-Bollobás theorem for operators from an arbitrary Banach space X into a Banach space Y whenever the range space has property β of Lindenstrauss. We also characterize those Banach spaces Y for which the Bishop-Phelps-Bollobás theorem holds for operators from ?1 into Y. Several examples of classes of such spaces are provided. For instance, the Bishop-Phelps-Bollobás theorem holds when the range space is finite-dimensional, an L1(μ)-space for a σ-finite measure μ, a C(K)-space for a compact Hausdorff space K, or a uniformly convex Banach space.  相似文献   

13.
Let T be an injective bilateral weighted shift onl 2 thought as "multiplication by λ" on a space of formal Laurent series L2(β). (a) If L2(β) is contained in a space of quasi-analytic class of functions, then the point spectrum σp(T?) of T? contains a circle and the cyclic invariant subspaceM f of T generated by f is simply invariant (i.e., ∩{(Tk M f)?: k ≥ 0}= {0}) for each f in L2(β); (b) If L2(β) contains a non-quasi-analytic class of functions (defined on a circle г) of a certain type related with the weight sequence of T, then there exists f in L2(ß) such thatM f is a non-trivial doubly invariant subspace (i.e., (TM f)? =M f); furthermore, if г ? σp(T*), then σp (T*) = г and f can be chosen so that σp([T∣M f]*) = г?{α}, for some α ε г. Several examples show that the gap between operators satisfying (a) and operators satisfying (b) is rather small.  相似文献   

14.
A definition is given of a symmetric local semigroup of (unbounded) operators P(t) (0 ? t ? T for some T > 0) on a Hilbert space H, such that P(t) is eventually densely defined as t → 0. It is shown that there exists a unique (unbounded below) self-adjoint operator H on H such that P(t) is a restriction of e?tH. As an application it is proven that H0 + V is essentially self-adjoint, where e?tH0 is an Lp-contractive semigroup and V is multiplication by a real measurable function such that VL2 + ε and e?δVL1 for some ε, δ > 0.  相似文献   

15.
We formulate a general theory of positions for subspaces of a Banach space: we define equivalent and isomorphic positions, study the automorphy index a(Y,X) that measures how many non-equivalent positions Y admits in X, and obtain estimates of a(Y,X) for X a classical Banach space such as ?p,Lp,L1,C(ωω) or C[0,1]. Then, we study different aspects of the automorphic space problem posed by Lindenstrauss and Rosenthal; namely, does there exist a separable automorphic space different from c0 or ?2? Recall that a Banach space X is said to be automorphic if every subspace Y admits only one position in X; i.e., a(Y,X)=1 for every subspace Y of X. We study the notion of extensible space and uniformly finitely extensible space (UFO), which are relevant since every automorphic space is extensible and every extensible space is UFO. We obtain a dichotomy theorem: Every UFO must be either an L-space or a weak type 2 near-Hilbert space with the Maurey projection property. We show that a Banach space all of whose subspaces are UFO (called hereditarily UFO spaces) must be asymptotically Hilbertian; while a Banach space for which both X and X are UFO must be weak Hilbert. We then refine the dichotomy theorem for Banach spaces with some additional structure. In particular, we show that an UFO with unconditional basis must be either c0 or a superreflexive weak type 2 space; that a hereditarily UFO Köthe function space must be Hilbert; and that a rearrangement invariant space UFO must be either L or a superreflexive type 2 Banach lattice.  相似文献   

16.
The main result of this paper is the following extension of an embedding theorem by Nagata: given a sequence of zero-dimensional sets X1,X2,… in a metrizable space X of weight τ⩾ℵ0, the set of homeomorphic embeddings h of X into S(τ)0, satisfying h(Xn)⊂Kn-1(τ) for n= 1,2,…, is dense in the function space of all continuous mappings of X into S(τ)0, where Kn(τ) is the n-dimensional universal Nagata's space in the countable product of the star-space S(τ) of weight τ. This seems to be a new result even in the separable case τ=χ0 and provides in particular an answer to a question asked by Kuratowski (see Remark 2.6 for the details).  相似文献   

17.
A necessary and sufficient condition that a densely defined linear operator A in a sequentially complete locally convex space X be the infinitesimal generator of a quasi-equicontinuous C0-semigroup on X is that there exist a real number β ? 0 such that, for each λ > β, the resolvent (λI ? A)?1 exists and the family {(λ ? β)k(λI ? A)?k; λ > β, k = 0, 1, 2,…} is equicontinuous. In this case all resolvents (λI ? A)?1, λ > β, of the given operator A and all exponentials exp(tA), t ? 0, of the operator A belong to a Banach algebra Bг(X) which is a subspace of the space L(X) of all continuous linear operators on X, and, for each t ? 0 and for each x?X, one has limkz (I ? k?1tA)?kx = exp(tA) x. A perturbation theorem for the infinitesimal generator of a quasi-equicontinuous C0-semigroup by an operator which is an element of Bг(X) is obtained.  相似文献   

18.
It is shown that the first order multivalued equation for V = V(t, x, y, z) involving the sum of two subdifferentials composed with the partials of V (Vt +f(t, x, y, z) · ▽xV + β(Vy) + γ(Vz) + h(t, x, y, z) ? 0 a.e.) has a Lipschitz solution. This solution is shown to be the value of a differential game in which the players are restricted to choosing monotone nondecreasing functions of time. Accordingly, the multivalued equation is interpreted as the corresponding Hamilton-Jacobi equation of the game.  相似文献   

19.
R. Pol has shown that for every countable ordinal number α there exists a universal space for separable metrizable spaces X with trindX?α. W. Olszewski has shown that for every countable limit ordinal number λ there is no universal space for separable metrizable space with trIndX?λ. T. Radul and M. Zarichnyi have proved that for every countable limit ordinal number there is no universal space for separable metrizable spaces with dimWX?α where dimW is a transfinite extension of covering dimension introduced by P. Borst. We prove the same result for another transfinite extension dimC of the covering dimension.As an application, we show that there is no absorbing sets (in the sense of Bestvina and Mogilski) for the classes of spaces X with dimCX?α belonging to some absolute Borel class.  相似文献   

20.
We find conditions for a smooth nonlinear map f: U → V between open subsets of Hilbert or Banach spaces to be locally convex in the sense that for some c and each positive ? < c the image f(B ?(x)) of each ?-ball B ?(x) ? U is convex. We give a lower bound on c via the second order Lipschitz constant Lip2(f), the Lipschitz-open constant Lipo(f) of f, and the 2-convexity number conv2(X) of the Banach space X.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号