首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
We report results obtained from optical absorption studies carried out on amorphous silicon thin films deposited by plasma-enhanced chemical vapour deposition (PECVD) from silane plasma. The influence of the film thickness was studied on the two series of samples deposited from undiluted silane and under moderate hydrogen dilution of silane. Spectral refractive indices and absorption coefficients were determined from transmittance spectra. The spectral absorption coefficients were used to determine the Tauc optical band-gap energies Eg, the B factors of the Tauc plots, the iso-energy values E04 (energy at which the absorption coefficient is equal to 104 cm−1). The results were correlated with volume fractions of the amorphous phase and voids and with the film thickness.  相似文献   

2.

The effect of the dilution of silane and nitrogen with hydrogen on the optical properties of hydrogenated amorphous silicon-nitrogen films prepared by plasma deposition has been investigated as functions of the gas-volume ratio γ (= ([SiH4] + [N2])/([SiH4] + [N2] + [H2]) and the substrate temperature. The prepared films are characterized by the values of the deposition rate, the optical gap, the Urbach energy, the defect density, the integrated infrared absorption intensity and the refractive index, and by correlations between these parameters and the type of hydrogen- and nitrogen-bonding configurations estimated from infrared absorption spectra. The hydrogen dilution effect is discussed in terms of the above and compared with that in hydrogenated amorphous silicon reported in a previous paper by the present authors. It is pointed out that nitrogen atoms incorporated into the silicon network cause more disorder than incorporated hydrogen atoms, from the γ dependence of the Urbach energy and the integrated infrared intensities associated with the hydrogen and nitrogen bondings.  相似文献   

3.
The effect of deposition temperature on the structural and optical properties of amorphous hydrogenated silicon (a-Si:H) thin films deposited by plasma-enhanced chemical vapour deposition (PECVD) from silane diluted with hydrogen was under study. The series of thin films deposited at the deposition temperatures of 50–200°C were inspected by XRD, Raman spectroscopy and UV Vis spectrophotometry. All samples were found to be amorphous with no presence of the crystalline phase. Ordered silicon hydride regions were proved by XRD. Raman measurement analysis substantiated the results received from XRD showing that with increasing deposition temperature silicon-silicon bond-angle fluctuation decreases. The optical characterization based on transmittance spectra in the visible region presented that the refractive index exhibits upward trend with increasing deposition temperature, which can be caused by the densification of the amorphous network. We found out that the scale factor of the Tauc plot increases with the deposition temperature. This behaviour can be attributed to the increasing ordering of silicon hydride regions. The Tauc band gap energy, the iso-absorption value their difference were not particularly influenced by the deposition temperature. Improvements of the microstructure of the Si amorphous network have been deduced from the analysis.  相似文献   

4.
侯国付  耿新华  张晓丹  孙建  张建军  赵颖 《中国物理 B》2011,20(7):77802-077802
A series of hydrogenated silicon thin films with varying silane concentrations have been deposited by using very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) method. The deposition process and the silicon thin films are studied by using optical emission spectroscopy (OES) and Fourier transfer infrared (FTIR) spectroscopy, respectively. The results show that when the silane concentration changes from 10% to 1%, the peak frequency of the Si—H stretching mode shifts from 2000 cm - 1 to 2100 cm - 1, while the peak frequency of the Si—H wagging—rocking mode shifts from 650 cm - 1 to 620 cm - 1. At the same time the SiH*/Hα intensity ratio in the plasma decreases gradually. The evolution of the infrared spectra and the optical emission spectra demonstrates a morphological phase transition from amorphous silicon (a-Si:H) to microcrystalline silicon (μc-Si:H). The structural evolution and the μc-Si:H formation have been analyzed based on the variation of Hα and SiH* intensities in the plasma. The role of oxygen impurity during the plasma process and in the silicon films is also discussed in this study.  相似文献   

5.
椭偏透射法测量氢化非晶硅薄膜厚度和光学参数   总被引:1,自引:0,他引:1       下载免费PDF全文
针对多角度椭偏测量透明基片上薄膜厚度和光学参数时基片背面非相干反射光的影响问题,报道了利用椭偏透射谱测量等离子增强化学气相沉积法(PECVD)制备的a-Si:H薄膜厚度和光学参数的方法,分析了基片温度Ts和辉光放电前气体温度Tg的影响.研究表明,用椭偏透射法测量的a-Si:H薄膜厚度值与扫描电镜(SEM)测得的值相当,推导得到的光学参数与其他研究者得到的结果一致.该方法可用于生长在透明基片上的其他非晶或多晶薄膜. 关键词: 椭偏测量 透射法 光学参数 氢化非晶硅薄膜  相似文献   

6.
Intrinsic hydrogenated microcrystalline silicon (\muc-Si:H) films have been prepared by hot-wire-assisted microwave electron-cyclotron-resonance chemical vapour deposition (HW-MWECR-CVD) under different deposition conditions. Fourier-transform infrared spectra and Raman spectra were measured. Optical band gap was determined by Tauc plots, and experiments of photo-induced degradation were performed. It was observed that hydrogen dilution plays a more essential role than substrate temperature in microcrystalline transformation at low temperatures. Crystalline volume fraction and mean grain size in the films increase with the dilution ratio (R=H2/(H2+SiH4)). With the rise of crystallinity in the films, the optical band gap tends to become narrower while the hydrogen content and photo-induced degradation decrease dramatically. The samples, were identified as \mu c-Si:H films, by calculating the optical band gap. It is considered that hydrogen dilution has an effect on reducing the crystallization activation energy of the material, which promotes the heterogeneous solid-state phase transition characterized by the Johnson--Mehl--Avrami (JMA) equation. The films with the needed structure can be prepared by balancing deposition and crystallization through controlling process parameters.  相似文献   

7.
We report results obtained from FTIR and TEM measurements carried out on silicon thin films deposited by plasma-enhanced chemical vapor deposition (PECVD) from silane diluted with hydrogen. The hydrogen content, the microstructure factor, the mass density and the volume per Si-H vibrating dipoles were determined as a function of the hydrogen dilution. Hydrogen dilution of silane results in an inhomogeneous growth during which the material evolves from amorphous hydrogenated silicon (a-Si:H) to microcrystalline hydrogenated silicon (μc-Si:H). With increasing dilution the transition from amorphous to microcrystalline phase appears faster and the average mass density of the films decreases. The μc-Si:H films are mixed-phase void-rich materials with changing triphasic volume fractions of crystalline and amorphous phases and voids. Different bonding configurations of vibrating Si-H dipoles were observed in the a-Si:H and μc-Si:H. The bonding of hydrogen to silicon in the void- and vacancy-dominated mechanisms of network formation is discussed.  相似文献   

8.
An analysis is reported of thickness-induced defects in amorphous GeSe2 thin films deposited by the vacuum evaporation technique. X-ray diffraction studies confirmed the amorphous nature of the thin films. Optical absorption measurements revealed an indirect transition with an energy gap that increases with film thickness. A blue shift in optical transmittance edges was observed in annealed GeSe2 thin films. The obtained lower values of Urbach energy (E U) indicate that as thickness increases more ordered films can be produced. Raman spectra suggest that annealing promotes corner-sharing GeSe4/2 tetrahedra and edge-sharing Ge2Se8/2 bi-tetrahedra bonding and leads to the reduction in disorder in bonding network, which is amply supported by the way of increase in band gap, increase in Tauc parameter (B 1/2) and reduction in E U from the analysis of transmittance spectra. Increasing the thickness promotes tetrahedral and bi-tetrahedral bonding through the reduction in bonding defects.  相似文献   

9.
Thin films of hydrogenated amorphous silicon (a-Si:H) were annealed using CO2 laser radiation (λ=10.6 μm). Changes of optical properties of the treated a-Si:H were investigated using optical transmittance spectroscopy and the angular distribution of intensity of reflected radiation (ADIRR). The CO2 laser annealing influences the spectral characteristics of the real part of refractive index n and absorption coefficient α of light in a-Si:H. This treatment increases the n and α values as well as the Urbach energy of a-Si:H. Simultaneously it decreases the optical energy gap of this material. The changes of optical parameters at the interfaces of a-Si:H–glass substrate and a-Si:H–air were established.  相似文献   

10.
S. B. Li  Z. M. Wu  W. Li  N. M. Liao  Y. D. Jiang 《哲学杂志》2013,93(35):5539-5549
The dependences of microstructure and optical properties of hydrogenated polymorphous silicon (pm-Si:H) films on total gas pressure were studied. Instead of using high diluted silane in H2, pure silane was used as the source gas. The films were grown by the radio-frequency plasma-enhanced chemical vapour deposition method. Fourier-transform infrared spectrometry was used to characterize the presence of Si m H n clusters in pm-Si:H film deposited on KBr substrate. Atomic force microscopy (AFM) analysis characterized the morphology of the pm-Si:H films and X-ray diffraction at grazing incidence angle (XRDGI) microstructure analysis also confirmed the existence of Si m H n nanocrystalline clusters in pm-Si:H. The thickness and optical constants of the films were measured by spectra ellipsometry as well as scanning electron microscopy. Derived using the Tauc relation, the dependence of optical bandgap, Eg , and coefficient, B, on the pressure during deposition process is discussed. The influence of inter-electrode distance on growth rate and surface smooth was analyzed using AFM.  相似文献   

11.
采用对靶磁控反应溅射技术,以氢气作为反应气体在不同的氢稀释比条件下制备了氢化非晶硅薄膜.利用台阶仪、傅里叶红外透射光谱、Raman谱和紫外-可见光透射谱测量研究了不同氢稀释比对氢化非晶硅薄膜生长速率和结构特性的影响.分析结果发现,利用对靶磁控溅射技术能够实现低温快速沉积高质量氢化非晶硅薄膜的制备.随着氢稀释比不断增加,薄膜沉积速率呈现先减小后增大的趋势.傅里叶红外透射光谱表明,氢化非晶硅薄膜中氢含量先增大后变小.而Raman谱和紫外-可见光透射谱分析发现,氢稀释比的增加使氢化非晶硅薄膜有序度和光学带隙均先增大后减小.可见,此技术通过改变氢稀释比R能够实现氢化非晶硅薄膜结构的有效控制.  相似文献   

12.
Optical and photoelectric measurements demonstrate that hydrogenated amorphous silicon prepared by glow discharge decomposition of silane has an exponential optical absorption edge, over the photon energy range 1.4–1.8 eV with a slope of 0.05–0.08 eV. Evidence is presented that the photogeneration efficiency is unity at room temperature and independent of electric field (102?104 V/cm?1) and photon energy (1.2–2.2 eV).  相似文献   

13.
微晶硅薄膜带隙态及微结构的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了氢化微晶硅薄膜费米能级以上的带隙态密度分布与薄膜微结构关系.采用拉曼谱和红外谱表征不同H稀释比制备的微晶硅薄膜的微结构.薄膜带隙态密度分布由调制光电流的相移分析技术测得.采用三相模型(非晶相、晶相和界面相)分析了薄膜带隙态密度与薄膜微结构的关系.结果表明,材料的带隙态密度随着界面相的增加而增加,当界面体积分数达到最大时,薄膜的带隙态密度也最大,即材料的带隙态密度与界面体积分数正相关. 关键词: 带隙态 界面相 微晶硅 调制光电流  相似文献   

14.
Fe-doped hydrogenated amorphous carbon (a-C:H:Fe) films were deposited from a gas mixture of trans-2-butene/ferrocene/H2 by plasma enhanced metal organic chemical vapor deposition. X-ray photoelectron spectroscopy, Fourier transform infrared spectra and Raman spectra were used to characterize the composition and the bonding structure of the a-C:H:Fe and a-C:H films. Optical properties were investigated by the UV–visible spectroscopy and the photoluminescence (PL) spectra. The Fe-doped films contain more aromatic structures and C=C bonds than the undoped films. The sp 2 carbon content and sp 2 clustering of the films increase, and aromatic-like rings’ structures become richer after Fe-doping. The Tauc optical gap of the a-C:H:Fe films become narrower by 0.3 eV relative to the value of the a-C:H films. The PL peak shifts from 2.35 eV of the a-C:H films to 1.95 eV of the a-C:H:Fe films, and the PL intensity of the a-C:H:Fe films is greatly enhanced. A deep level emission peak around 2.04 eV of the a-C:H:Fe films is observed.  相似文献   

15.
The ion beam deposition (IBD) of hydrogenated amorphous silicon is described. Hydrogen incorporation and bonding with the silicon network is evident from SIMS and infrared spectra; the latter show absorption bands centered at 2000cm?1 and 630cm?1 typical of monosilicon hydride bonding. IBD a-Si:H thin films are found to be free of microvoids and trace metallic impurities. Four probe conductivity measurements show that the ion beam deposition process yields high resistivity, hydrogenated amorphous silicon (?≥109Ωcm). All of these measurements suggest a low density of defects states in the band gap.  相似文献   

16.
A series of hydrogenated amorphous silicon carbide film (a-SiC:H) were prepared by rf plasma-enhanced chemical vapor deposition method. The optical band gap(Eoptg) of the films can be extended to 2.6eV. The as-deposited alma were then irradiated by a KrF excimer laser. During the irradiation process, hydrogen escaped out of the films, and the structure of the films was changed from an amorphous phase to mixed phases of nanocrystallites of silicon and amorphous silicon carbide. The room-temperature dark conductivity of the laser irradiated films is 6-7 orders of magnitude larger than that of the as-deposited films, which was attributed to the modification of the conductivity mechanism resulting from the structural change.  相似文献   

17.
Effects of silane temperature (T g) before glow-discharge on the optical and transport properties of hydrogenated amorphous silicon (a-Si:H) thin films were investigated. The optical measurements show that the refractive index increases with increasing T g. The transport characterizations show that when T g increases, the dark conductivity increases. However, the temperature coefficient of resistance decreases. In addition, after holding at 130°C for 20 h, the resistance variation, ΔR/R, of the films deposited at T g = room temperature (10.8%) is much larger than those deposited at silane temperatures of 80°C (3%) and 160°C (2%). This can be attributed to different rates of defect creation in a-Si:H films caused by various T g.  相似文献   

18.
The intrinsic defect photoluminescence of hydrogenated amorphous silicon (a-Si:H) films has been investigated at high intensities of optical pumping that lead to heating of the film. It has been revealed that, for short heating times, the intensity of the defect photoluminescence increases exponentially with an increase in the temperature with an activation energy of 0.85 eV, which is considerably higher than the activation energy (∼0.2 eV) determined from experiments on classical annealing. This and other experimental results on the temperature dependence of the intensity and kinetics of the defect photoluminescence have been explained in terms of the “hydrogen glass” model by thermally induced generation of intrinsic defects in amorphous silicon. The results of the calculations are in good agreement with the experimental data on the defect photoluminescence that reflects the formation and annihilation of defects for short heating times under optical excitation.  相似文献   

19.
Hydrogenated microcrystalline silicon films have been prepared by plasma-enhanced chemical vapor deposition technique using silane diluted in H2 or H2 + Ar. The microstructures for silicon films have been evaluated by Raman scattering spectroscopy, X-ray diffraction and Fourier-transform infrared spectroscopy. Optical characterization has been done by UV-vis spectroscopy. It is found that the addition of Ar in diluent gases efficiently improves the deposition rate and crystallinity due to an enhanced dissociation of the source gas and the energy of deexcitation of Ar* released within the growth zone. Meanwhile, the enhanced crystallinity and the reducing of hydrogen ion bombardment with increasing Ar dilution lead to the polymerization and also a bad passivation of the hydrogen which cause the widening of the optical gap and increase of defect states in the μc-Si films. The absorption coefficient and dark conductivity are found to decrease basically with increasing Ar dilution corresponding to the widening optical gap and more defects. That the activation energy increases with increasing Ar dilution or decreasing hydrogen dilution is due to the fact that more defect states lead to a pulling down of the Fermi level.  相似文献   

20.
Very thin (nanometric) silicon layers were grown in between silicon nitride barriers by SiH2Cl2/H2/NH3 plasma-enhanced chemical vapor deposition (PECVD). The multilayer structures were deposited onto fused silica and silicon substrates. Deposition conditions were selected to favor Si cluster formation of different sizes in between the barriers of silicon nitride. The samples were thermally treated in an inert atmosphere for 1 h at 500 °C for dehydrogenation. Room-temperature photoluminescence (RT-PL) and optical transmission in different ranges were used to evaluate the optical properties of the structures. UV-VIS absorption spectra present two band edges. These band edges are well fitted by the Tauc model typically used for amorphous materials. RT-PL spectra are characterized by strong broad bands, which have a blue shift as a function of the deposition time of the silicon layer, even for as-grown samples. The broad luminescence could be associated with the confinement effect in the silicon clusters. After annealing of the samples, the PL bands red shift. This is probably due to the thermal decomposition of N-H bonds with further effusion of hydrogen and better nitrogen passivation of the nc-Si/SiNx interfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号