首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Complexes with antimony-containing anions, [Ph3MeP] + 2 [SbI5]2? (I), [Ph3MeP] + 2 [Sb3I12]3? (II), [Ph3MeP] + 3 [Sb3I12]3? · Me2C=O (III), and [Ph3MeP] + 3 [Sb2I9]3? (IV), were synthesized by reacting triphenylmethylphosphonium iodide with antimony iodide. The central atom in the cations of the complexes has a distorted tetrahedral coordination. In the trinuclear anions of complexes II and III, each of the terminal SbI3 groups is bound to the central Sb atom through two μ2- and one μ3 iodine bridges (SbSbSb angles are 103.0° and 102.2°, respectively). In the binuclear anion of complex IV, antimony atoms are linked with each other via three bridging iodine atoms.  相似文献   

2.
The reaction of equimolar amounts of triphenylamyl- and triphenylpropylphosphonium iodides and triethanolammonium iodide with antimony iodide in dimethyl sulfoxide, dioxane, or acetone gave complexes [Ph3AmP] 2 + [Sb2I8 · 2DMSO]2?, [Ph3PrP] 2 + [Sb2I8 · C4H8O2]2?, and [(HOCH2CH2)3NH] 4 + [Sb4I16]4?, the structure of which was established by X-ray diffraction analysis. The cations of all complexes have slightly distorted tetrahedral structure, and the antimony atoms in the anions are hexacoordinated. The crystals of the complexes have intra- and intermolecular contacts, which form the structure.  相似文献   

3.
Complexes [(4-MeC6H4)4Sb] 2 + [Hg2I6]2? (I), [(4-MeC6H4)4Sb] 2 + [HgI4]2? (II), [(4-MeC6H4)4Sb] 3 + [Sb3I12]2? (III), were synthesized by reactions of tetra-p-tolylantimony iodide with mercury iodide and antimony iodide, respectively. Tetra-p-tolylantimony perrhenate [(4-MeC6H4)4Sb]+[ReO4]? (IV) was prepared from tetra-p-tolylantimony chloride and sodium perrhenate in acetone. Crystal structures of complexes I, II, and IV were determined by X-ray crystallography. Mercury and rhenium atoms have tetrahedral coordinations in these complexes. The Hg-I and Re-O distances in the structures of I, II, and IV vary within 2.7719(13)–2.7908(12)Å, 2.7028(3)–2.9163(3) Å, and 1.693(3)–1.744(3) Å, respectively. Antimony atoms in two crystallographically independent trinuclear centrosymmetric [Sb3I12]2? anions of complex III have an octahedral environment. Each terminal SbI3 fragment (Sb-It, 2.8265(9)–2.8333(10)Å) is bound to the central atom through tree bridging iodine atoms (Sb(2)-Ibr, 3.2275(9)–3.3620(10)Å). The distances between the central Sb atom and bridging iodine atoms are much shorter (Sb(1)-Ibr, 3.0153(6)–3.0316(6) Å; Sb(3)-Ibr, 2.9926(6)–3.0074(6) Å).  相似文献   

4.
The reactions of tetraphenylbismuthonium and -stibonium salts Ph4EX (E = Bi, Sb; X = I, OSO2 (C6H3(CH3)2-2,5), OSO2C6H3(OH-4)(COOH-3)) with bismuth triiodide in acetone afford complexes [Ph4Bi]+[PhBi(C5H5N)I3]-, [(Ph4BiO)2S(O){2,5-(CH3)2C6H3S(O)} [Ph2Bi2I6]2–, [Ph4Sb [Bi4I16]4-·2(CH3)2C=O, and [Ph4Sb] 3+ + [Bi5I18]3-, whose structural units, according to the X-ray diffraction data, are tetraphenylbismuthonium (-stibonium) cations and mono-, di-, tetra-, and pentanuclear anions, respectively.  相似文献   

5.
Complexes [Ph3MeP] 2 + [BiI3.5Br1.5(C5H5N)]2? · C5H5N(I), [Ph4Bi] 4 + [Bi4I16]4? · 2Me2C=O (II), and [Ph3(iso-Am)P] 4 + [Bi8I28]4? · 2Me2C=O (III) were synthesized by reactions of bismuth iodide with triphenylmethylphosphonium bromide, triphenylbismuthonium sulfosalicylate, and triphenylisoamylphosphonium iodide, respectively. The crystal structures of complexes I–III were determined by X-ray crystallography. The complexes contain, in addition to cations and solvent molecules, mono-, tetra-, and octanuclear anions, in which bismuth atoms are in octahedral coordination.  相似文献   

6.
Russian Chemical Bulletin - The complexes [Et2H2N]+2[ZrCl6]2– (1), [Me3NCH2Ph]+2[ZrCl6]2–?MeCN (2), [Ph3PC6H4(CHPh2-4)]+2[ZrCl6]2–?2 MeCN (3), and...  相似文献   

7.
The complexes [Ph3PMe] 2 + [BiI5]2? (I) and [Ph3PMe] 2 + [BiI5 · C 5H5N]2? · C 5H5N (II) were synthesized by the reaction of bismuth triiodide with triphenylmethylphosphonium iodide, and their structures were determined by X-ray diffraction analysis. The P atom in cation I has slightly distorted tetragonal coordination polyhedron (the CPC angles 109.42(4)° and 109.52(4)°, the bond lengths P-CPh 1.779(2), P-CMe 1.793(1) Å. The Bi atom in the anion of complex I has an ideal trigonal-bipyramidal coordination polyhedron (Bi-Ieq 3.0031(4), Bi-Ieq 3.0485(5) Å). The crystal of complex II consists of the anions [BiI5 · C 5H5N]2?, solvated pyridine molecules, and two types of crystallographically independent tetrahedral triphenylmethylphosphonium cations (the angles CPC 106.9(1)°–111.7(1)°, the distances P-CPh 1.785(3)–1.792(3), P-CMe 1.793(3), 1.786(3) Å). The Bi atoms in the anion of complex II have a distorted octahedral coordination polyhedron (Bi-I 3.0878(4)–3.1240(3), Bi-N(1) 2.628(3) Å).  相似文献   

8.
The [NpO2(DPPMO2)2Cl][NpO2Cl4] complex (where DPPMO2 = bis(diphenylphosphino)methanedioxide) contains the linear neptunyl group, {NpO2}2+, with two bidentate P=O donor ligands. Coordinating anion Cl? fills the fifth equatorial coordination site yielding a complex of general formula [NpO2(DPPMO2)2X]2[Y] (1) (where X = Cl? and Y = [NpO2Cl4]2?. Reaction between our newly prepared neptunium starting material [NpO2Cl2(thf)]n and phosphinimine ligand produced crystals of [Ph3PNH2]2[NpO2Cl4] (2). Compounds 1 and 2 have been structurally characterised.  相似文献   

9.
Russian Journal of Coordination Chemistry - The reaction of bis(tetraphenylantimony) succinate with iodine in benzene affords [(μ4-succinato) hexadecaphenyltetraantimony] triiodide solvate...  相似文献   

10.
A new thiolate cluster complex (Bu4N)2[Mo6I8(SC6F4H)6] was synthesized by the metathesis reaction of (Bu4N)2[Mo6I14] and HC6F4SAg in methylene chloride. According to the X-ray structure determination, the cluster core {Mo6I8}4+ coordinates six thiolate ligands 2,3,5,6-HC6F4S?. The Mo-Mo and Mo-I distances have their usual values. The average Mo-S distance is 2.538(4) Å, and the Mo-S-C angles range from 107 to 109°. Compound (Bu4N)2[Mo6I8(SC6F4H)6] both in solid and in solution displays a bright red microsecond luminescence, which is typical of octahedral molybdenum halide complexes.  相似文献   

11.
In this work, the largest heterometallic supertetrahedral clusters, [Zn6Ge16]4− and [Cd6Ge16]4−, were directly self-assembled through highly-charged [Ge4]4− units and transition metal cations, in which 3-center–2-electron σ bonding in Ge2Zn or Ge2Cd triangles plays a vital role in the stabilization of the whole structure. The cluster structures have an open framework with a large central cavity of diameter 4.6 Å for Zn and 5.0 Å for Cd, respectively. Time-dependent HRESI-MS spectra show that the larger clusters grow from smaller components with a single [Ge4]4− and ZnMes2 units. Calculations performed at the DFT level indicate a very large HOMO–LUMO energy gap in [M6Ge16]4− (2.22 eV), suggesting high kinetic stability that may offer opportunities in materials science. These observations offer a new strategy for the assembly of heterometallic clusters with high symmetry.  相似文献   

12.
Reaction of Hg(NO3)2 with 4 equivalent KI in water afford K2[HgI4]. By using K2[HgI4] as the precursor, three new heterobimetallic compounds [Ni(N-MeIm)6][HgI4] (I), [Co(N-MeIm)6][HgI4] (II), and [Cu(N-MeIm)6][HgI4] (III) have been characterized by elemental analysis, IR spectra, and the singlecrystal X-ray crystallorgraphy analysis. Three complexes are isomorphous and crystallized in monoclinic symmetry space group P21/c. The coordination around each center metal(II) atom is octahedral with six nitrogen atoms of N-MeIm ligand. Each structure contains one tetrahedral [HgI4]2? as an anion to balance the charge of the molecular. Thermogravimetry analysis indicates these complexes have the similar departure process and cyclic voltammogram exhibits a significant pair of redox peaks.  相似文献   

13.
A new binuclear mercury(I) complex, [Hg2(L)2(NO3)2] (L = (4-nitrophenyl)pyridin-2-ylmethyleneamine), 1, has been synthesized and characterized by CHN analyses, IR, UV–vis spectroscopy and X-ray crystal structure analysis. The complex contains a metal–metal bonded core, [Hg–Hg]2+, in which a single bidentate imine ligand is coordinated to each mercury atom. The Hg atoms have an additional interaction with the oxygen atom of the NO3 ? ion. Theoretical studies show that the interaction energy between the two {Hg(L)NO3} fragments is about 45–59 kcal/mol depending on the level of calculation. The Mayer-Mulliken and Wiberg bond indices (WBI) for Hg–Hg bond at different levels of theory are about 0.75–0.88 and 0.60–0.70, respectively, and are significantly larger than that for Hg–N and Hg–O bonds. The NBO calculations by using different methods and basis sets also show that the S character in Hg–Hg bond is very large (94.65–97.81 %). All above data for this complex are compared with those for linear Hg2X2 (X = F,Cl, Br, I, Ph) complexes. Interestingly, the bond order for Hg–Hg bond in complex 1 is comparable with that for Hg2F2 and larger than those in above linear complexes. This is consistent with the experimental data indicating that the Hg–Hg bond in 1 is shorter than that in all above complexes, except Hg2F2.  相似文献   

14.
121Sb Mössbauer spectra of the title complexes, whose isomer shifts are intermediate between the organoantimony(III) and organoantimony(V) compounds, suggest that considerable electrons are donated from hydrido ligand and Fe(CO)4 fragments to the antimony atom.  相似文献   

15.
16.
The [Ni36Pt4(CO)45]6- and [Ni37Pt4(CO)46]6- clusters have been obtained in mixture upon reaction in acetonitrile of [Ni6(CO)12]2- salts with K2PtCl4 in a 2.5:1 molar ratio. The two hexaanions were indistinguishable by spectroscopic techniques. Crystallization of their trimethylbenzylammonium salts led to crystals of composition 0.5[NMe3CH2Ph]6[Ni36Pt4(CO)45]-0.5[NMe3CH2Ph]6[Ni37Pt4(CO)46]·C3H8O, hexagonal,space group P63 (No. 173), a=17.853(9), c=27.127(13) Å, Z=2; final R=0.057. The metal core of the [Ni36Pt4(CO)45]6- anion consists of a Pt4 tetrahedron fully encapsulated in a shell of 36 Ni atoms belonging to a very distorted and incomplete 5 tetrahedron. The [Ni37Pt4(CO)46]6- hexaanion derives from the former by capping the unique triangular face of the metal polyhedron with an additional Ni(CO) fragment. The [Ni36Pt4(CO)45]6--[Ni37Pt4(CO)46]6- mixture is rapidly degraded to the known [Ni9Pt3(CO)21]4- cluster by exposure to carbon monoxide. Its reaction with protic acids initially affords the corresponding [H6-nNi36Pt4(CO)45]n--[H6-nNi37Pt4(CO)46]n- (n=5, 4) derivatives, and eventually leads to rearrangement to the known [H6-n Ni38Pt6(CO)48]n- species. Both [Ni36Pt4(CO)45]6--[Ni37Pt4(CO)46]6- and [HNi36Pt4(CO)45]5--[HNi37Pt4(CO)46]5- mixtures have been chemically and electrochemically reduced to their corresponding [Ni36Pt4(CO)45]n--[Ni37Pt4(CO)46]n- (n=7–9) and [HNi36Pt4(CO)45]n--[HNi37Pt4(CO)46]n- (n=6–8) mixtures.  相似文献   

17.
Chromones are introduced into a double-tandem [4(π)+2(π)]·[2(π)+2(π)]·[4(π)+2(π)]·[2(π)+2(π)] synthetic sequence, culminating in photoprotolytic oxametathesis, which leads to an expeditious growth of molecular complexity over a few experimentally simple steps. The overall reaction can potentially be utilized in diversity-oriented synthesis, as it allows for three or more diversity inputs furnishing novel unique polycyclic scaffolds decorated with a variety of functionalities and aromatic/heterocyclic pendants. The polycyclic alkenes, resulting from the oxametathesis step, were found to undergo efficient and clean photoinduced epoxidation when irradiated in the presence of molecular oxygen.  相似文献   

18.
Hydride complexes of W(IV) with dpep (diphenylethylphosphine) and dpmp (diphenylmethylphosphine) were irradiated in thf+C6H12(11) solutions, saturated with N2+H2(13). Radiation yields of hydrazine, ammonia and amines were evaluated. The mechanism of reduction of molecular nitrogen is discussed.  相似文献   

19.
Self-assembly of the precursor [Cu(L)]2+ (L = 3,10-dipropyl-1,3,5,8,10,12-hexaazacyclotetradecane) with hexacyanometalate [Fe(CN)6]3− produces a 3-D cyano-bridged Cu(II)–Fe(III) bimetallic assembly, [CuL]2[Fe(CN)6]ClO4 · H2O (1), characterized by single-crystal X-ray diffraction studies, and magnetic measurements. The crystallographic determination reveals that each hexacyanoferromate(III) ion connects four copper(II) ions using four co-planar CN groups which axially coordinate to the copper ion in a trans fashion forming trans-CuL(N≡C)2 moieties in (1). Magnetic studies reveal that (1) displays a ferromagnetic interaction between Cu(II) and Fe(III) through the CN linkage.  相似文献   

20.
Treatment of iodide-bridged dimer [NEt4] 4[Mo2O2S6Cu6I4Br2] 1 with 3, 5-bimethylpyridine or with K[(Ph2PS) 2N] in CH3CN afforded the tetranuclear cluster [MoOS3Cu3I(3,5-diMePy)4]·CH3CN 2 and dodecanuclear cluster (Et4N)4[Mo4Cu8O4S12{(Ph2PS)2N}4] 3. Monomeric 2 possess a nest-shaped skeleton.The structure of oligomeric 3 can be regarded as a tetramer of nest-shaped MoCu3OS3[(Ph2PS)aN]groups co-polymerized by sharing the limbic Cu atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号