首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pore network analysis is used to investigate the effects of microscopic parameters of the pore structure such as pore geometry, pore-size distribution, pore space topology and fractal roughness porosity on resistivity index curves of strongly water-wet porous media. The pore structure is represented by a three-dimensional network of lamellar capillary tubes with fractal roughness features along their pore-walls. Oil-water drainage (conventional porous plate method) is simulated with a bond percolation-and-fractal roughness model without trapping of wetting fluid. The resistivity index, saturation exponent and capillary pressure are expressed as approximate functions of the pore network parameters by adopting some simplifying assumptions and using effective medium approximation, universal scaling laws of percolation theory and fractal geometry. Some new phenomenological models of resistivity index curves of porous media are derived. Finally, the eventual changes of resistivity index caused by the permanent entrapment of wetting fluid in the pore network are also studied.Resistivity index and saturation exponent are decreasing functions of the degree of correlation between pore volume and pore size as well as the width of the pore size distribution, whereas they are independent on the mean pore size. At low water saturations, the saturation exponent decreases or increases for pore systems of low or high fractal roughness porosity respectively, and obtains finite values only when the wetting fluid is not trapped in the pore network. The dependence of saturation exponent on water saturation weakens for strong correlation between pore volume and pore size, high network connectivity, medium pore-wall roughness porosity and medium width of the pore size distribution. The resistivity index can be described succesfully by generalized 3-parameter power functions of water saturation where the parameter values are related closely with the geometrical, topological and fractal properties of the pore structure.  相似文献   

2.
3.
Hysteresis in the saturation versus capillary pressure curves of neutrally wettable fibrous media was simulated with a random pore network model using a Voronoi diagram approach. The network was calibrated to fit experimental air-water capillary pressure data collected for carbon fibre paper commonly used as a gas diffusion layer in fuel cells. These materials exhibit unusually strong capillary hysteresis, to the extent that water injection and withdrawal occur at positive and negative capillary pressures, respectively. Without the need to invoke contact angle hysteresis, this capillary behaviour is re-produced when using a pore-scale model based on the curvature of a meniscus passing through the centre of a toroid. The classic Washburn relation was shown to produce erroneous results, and its use is not recommended when modelling fibrous media. The important effect of saturation distribution on the effective diffusivity of the medium was also investigated for both water injection and withdrawal cases. The findings have bearing on the understanding of both capillarity in fibrous media and fuel cell design.  相似文献   

4.

We investigate the influence of contact angle variations on spontaneous imbibition of moisture in porous materials. While the contact angle is typically assumed constant when modelling the moisture transfer in porous media, experimental findings put this assumption into question. It has been shown that during imbibition the contact angle notably rises with increasing meniscus velocity. This phenomenon resultantly affects the moisture retention curve, the relation linking the local capillary pressure to the local moisture saturation, which in turn impacts the imbibition rate and moisture distribution. This study investigates these dynamic effects via a pore network technique as well as a continuum approach. It is shown that the impacts of pore-scale contact angle variations on the imbibition process can be reproduced at the continuum scale through a modified moisture retention curve including a dynamic term. Complementarily a closed-form equation expressing the dynamic capillary pressure in terms of local saturation and saturation rate is derived. The continuum approach is then finally employed to predict measured moisture saturation profiles for imbibition in Berea sandstone and diatomite found in literature, and a fair agreement between simulated and measured outcomes is observed.

  相似文献   

5.
A parametric two-phase, oil–water relative permeability/capillary pressure model for petroleum engineering and environmental applications is developed for porous media in which the smaller pores are strongly water-wet and the larger pores tend to be intermediate- or oil-wet. A saturation index, which can vary from 0 to 1, is used to distinguish those pores that are strongly water-wet from those that have intermediate- or oil-wet characteristics. The capillary pressure submodel is capable of describing main-drainage and hysteretic saturation-path saturations for positive and negative oil–water capillary pressures. At high oil–water capillary pressures, an asymptote is approached as the water saturation approaches the residual water saturation. At low oil–water capillary pressures (i.e. negative), another asymptote is approached as the oil saturation approaches the residual oil saturation. Hysteresis in capillary pressure relations, including water entrapment, is modeled. Relative permeabilities are predicted using parameters that describe main-drainage capillary pressure relations and accounting for how water and oil are distributed throughout the pore spaces of a porous medium with mixed wettability. The capillary pressure submodel is tested against published experimental data, and an example of how to use the relative permeability/capillary pressure model for a hypothetical saturation-path scenario involving several imbibition and drainage paths is given. Features of the model are also explained. Results suggest that the proposed model is capable of predicting relative permeability/capillary pressure characteristics of porous media mixed wettability.  相似文献   

6.
The effect of pore-structure upon two-phase relative permeability and capillary pressure of strongly-wetting systems at low capillary number is simulated. A pore-level model consisting of a network of pore-bodies interconnected by pore-throats is used to calculate scanning loops of hysteresis between primary drainage, imbibition and secondary drainage. The pore-body to pore-throat aspect ratio strongly influences the pattern of hysteresis. Changes in the patterns of hysteresis often attributed to consolidation can be understood in terms of changes in aspect ratio. Correlation between the sizes of neighboring pore-throats affects the shape of the relative permeability curves, while the width and shape of the pore-size distribution have only a minor influence.  相似文献   

7.
Understanding the role of shuttle vibrations in pore fluid distribution is an essential task in the exploration of plant growth in root modules aboard space flights. Results from experimental investigations are reported in this paper on the distribution of immiscible fluid phases in glass beads under vibrations. Hexadecane, a petroleum compound immiscible with and lighter than water, was used in the experiments. The higher freezing point of Hexadecane (18 °C) allowed the solidification of the entrapped blobs in the presence of water in porous media, so that their size distribution can be obtained. van Genuchten function, commonly used to express moisture retention curves, is found to be an adequate fit for blob size distribution at residual saturation. The effect of vibrations on the fate (mobilization, stranding, or breakup) of a solitary ganglion in porous media was studied using a network model. A mobility criterion considering viscous, gravity, and capillary forces was developed to determine the fate of a solitary ganglion in a porous medium. It is concluded that the effect of vibrations is to increase the likelihood of breakup and mobilization of blobs entrapped in porous media at residual saturation. The pore fluid distributions after vibrations are less uniform than those before vibrations.  相似文献   

8.
将多孔介质简化为一簇变截面毛管束,根据多孔介质的颗粒直径、颗粒排列方式、孔喉尺度比及束缚水饱和度,计算出变截面毛细管的喉道半径和孔隙半径. 在考虑多孔介质喉道和孔隙中单个气泡的受力和变形基础上,利用动量守恒定理,推导出单个孔隙单元内液相的压力分布和孔隙单元两端的压差计算公式,最终得到多孔介质的压力分布计算公式. 利用长U型填砂管对稳定泡沫的流动特性进行了实验研究. 研究结果表明:稳定泡沫流动时多孔介质中的压力分布呈线性下降,影响泡沫在多孔介质中流动特性的因素包括:多孔介质的孔喉结构、泡沫流体的流量和干度、气液界面张力、气泡尺寸,其中孔喉结构和泡沫干度是影响泡沫封堵能力的主要因素.关键词: 稳定泡沫;多孔介质;变截面毛管;流动;表观粘度;压力分布;实验研究   相似文献   

9.
We report on results from primary drainage experiments on quasi-two-dimensional porous models. The models are transparent, allowing the displacement process and structure to be monitored in space and time during primary drainage experiments carried out at various speeds. By combining detailed information on the displacement structure with global measurements of pressure, saturation and the capillary number Ca, we obtain a scaling relation relating pressure, saturation, system size and capillary number. This scaling relation allows pressure–saturation curves for a wide range of capillary numbers to be collapsed on the same master curve. We also show that in the case of primary drainage, the dynamic effect in the capillary pressure–saturation relationship observed on partially water saturated soil samples might be explained by the combined effect of capillary pressure along the invasion front of the gaseous phase, and pressure changes caused by viscous effects in the wetting fluid phase.  相似文献   

10.
To gain insight in relationships among capillary pressure, interfacial area, saturation, and relative permeability in two-phase flow in porous media, we have developed two types of pore-network models. The first one, called tube model, has only one element type, namely pore throats. The second one is a sphere-and-tube model with both pore bodies and pore throats. We have shown that the two models produce distinctly different curves for capillary pressure and relative permeability. In particular, we find that the tube model cannot reproduce hysteresis. We have investigated some basic issues such as effect of network size, network dimension, and different trapping assumptions in the two networks. We have also obtained curves of fluid–fluid interfacial area versus saturation. We show that the trend of relationship between interfacial area and saturation is largely influenced by trapping assumptions. Through simulating primary and scanning drainage and imbibition cycles, we have generated two surfaces fitted to capillary pressure, saturation, and interfacial area (P c S w a nw ) points as well as to relative permeability, saturation, and interfacial area (k r S w a nw ) points. The two fitted three-dimensional surfaces show very good correlation with the data points. We have fitted two different surfaces to P c S w a nw points for drainage and imbibition separately. The two surfaces do not completely coincide. But, their mean absolute difference decreases with increasing overlap in the statistical distributions of pore bodies and pore throats. We have shown that interfacial area can be considered as an essential variable for diminishing or eliminating the hysteresis observed in capillary pressure–saturation (P c S w ) and the relative permeability–saturation (k r S w ) curves.  相似文献   

11.

This paper proposes the application of capillary and chain random models of pore space structure for determination of limit pore diameter distributions of porous materials, based on the mercury intrusion curves. Both distributions determine the range in which the pore diameter distribution of the investigated material occurs and defines the degree of inaccuracy of the method based on the mercury intrusion data caused by the indeterminacy of the sample shape and its pore space architecture. We derived equations describing the quasi-static process of mercury intrusion into the porous layer and porous ball with a random chain pore space structure and analysed the influence of the model parameters on the mercury intrusion curves. It was shown that the distribution of link length in the chain model of the pore space, random location of chain capillaries in the sample and the length distribution of the capillaries do not influence significantly the intrusion process. Therefore, a simple model of the mercury intrusion into the layer is proposed in which chain links of the pore space have random diameters and constant length. This model is used as a basic model of the intrusion process into a sample of any shape and size and with homogeneous and isotropic chain pore space architecture. The thickness of the layer then represents the mean length of chain capillaries in the sample. It was also proved that the capillary and chain models of pore space architecture are limit models of the network model identified in this paper with the pore architecture of the investigated sample. This justifies the application of both models for determination of limit cumulative distributions of pore diameters in porous materials based on the mercury intrusion data.

  相似文献   

12.
Pore-throat size correlation from capillary pressure curves   总被引:1,自引:0,他引:1  
Void spaces in porous media can be considered as three-dimensional networks consisting of bulges (pores) connected by constrictions (throats). Computer simulations of drainage-imbibition processes show that the critical end points of wetting-phase and nonwetting-phase saturation, in drainage and imbibition respectively, and the form of simulated relative permeability curves all were significantly different for uncorrelated and correlated pore-throat models. Since these models were identical except for the arrangement of throats in relation to pores, the degree of pore-throat size correlation appears to be an important property influencing flow and fluid displacement. Examples of uncorrelated and correlated pore-throat structures in rocks are presented and it is shown that this property, although difficult to quantify by direct observation, can be evaluated from capillary pressure curves.  相似文献   

13.
We present a dynamic model of immiscible two-phase flow in a network representation of a porous medium. The model is based on the governing equations describing two-phase flow in porous media, and can handle both drainage, imbibition, and steady-state displacement. Dynamic wetting layers in corners of the pore space are incorporated, with focus on modeling resistivity measurements on saturated rocks at different capillary numbers. The flow simulations are performed on a realistic network of a sandpack which is perfectly water-wet. Our numerical results show saturation profiles for imbibition in agreement with experiments. For free spontaneous imbibition we find that the imbibition rate follows the Washburn relation, i.e., the water saturation increases proportionally to the square root of time. We also reproduce rate effects in the resistivity index for drainage and imbibition.  相似文献   

14.
By means of the porous plate method and mercury porosimetry intrusion tests, capillary pressure curves of three different sandstones were measured. The testing results have been exploited jointly with three relative permeability models of the pore space capillary type (Burdine’s model type), these models are widely used and in rather distinct fields. To do so, capillary pressure has been correlated to saturation degree using six of the most popular relations encountered in the literature. Model predictions were systematically compared to the experimentally measured relative permeabilities presented in the first part of this work. Comparison indicated that the studied models underestimate the water relative permeability and over-estimate that of the non-wetting phase. Moreover, this modeling proves to be unable to locate the significant points that are the limits of fields of saturation where the variation of the relative permeabilities becomes consequent. We also showed that, if pore structure is modeled as a “bundle of capillary tubes”, model predications are independent of the capillary pressure curve measuring method.  相似文献   

15.
16.
The immiscible displacement of a wetting fluid by a non-wetting one in heterogeneous porous media is modeled using a multi-scale network-type analysis: (1) The pressure-controlled immiscible displacement of water by oil in pore-and-throat networks (1st length scale ~ 1?mm) is simulated as a capillary-driven process. (2) The pressure-controlled immiscible displacement in uncorrelated cubic lattices (2nd length scale ~ 1?cm) is simulated as a site percolation process governed by capillary and gravity forces. At this scale, each node represents a network of the previous scale. (3) The rate-controlled immiscible displacement of water by oil in cubic networks (3rd length scale ~ 10?cm), where each node represents a lattice of the previous scale, is simulated by accounting for capillary, gravity, and viscous forces. The multi-scale approach along with the information concerning the pore structure properties of the porous medium can be employed to determine the transient responses of the pressure drop and axial distribution of water saturation, and estimate the effective (up-scaled) relative permeability functions. The method is demonstrated with application to data of highly heterogeneous soils.  相似文献   

17.
18.
We present a mechanistic model of retrograde condensation processes in two- and three-dimensional capillary tube networks under gravitational forces. Condensate filling-emptying cycles in pore segments and gas connection–isolation cycles are included. With the pore-level distribution of gas and condensate in hand, we determine their corresponding relative permeabilities. Details of pore space and displacement are subsumed in pore conductances. Solving for the pressure field in each phase, we find a single effective conductance for each phase as a function of condensate saturation. Along with the effective conductance for the saturated network, the relative permeability for each phase is calculated. Our model porous media are two- and three-dimensional regular networks of pore segments with distributed size and square cross-section. With a Monte Carlo sampling we find the optimum network size to avoid size effects and then we investigate the effect of network dimensionality and pore size distribution on the relative permeabilities of gas and condensate.  相似文献   

19.
We have developed a Dynamic Pore-network model for Simulating Two-phase flow in porous media (DYPOSIT). The model is applicable to both drainage and imbibition processes. Employing improved numerical and geometrical features in the model facilitate a physically-based pore-scale simulator. This computational tool is employed to perform several numerical experiments (primary and main drainage, main imbibition) to investigate the current capillarity theory. Traditional two-phase flow formulations state that the pressure difference between the two phase is equal to the capillary pressure, which is assumed to be a function of saturation only. Many theoretical and experimental studies have shown that this assumption is invalid and the pressure difference between the two fluids is not only equal to the capillary pressure but is also related to the variation of saturation with time in the domain; this is referred to as the non-equilibrium capillarity effect. To date, non-equilibrium capillarity effect has been investigated mainly under drainage. In this study, we analyze the non-equilibrium capillarity theory under drainage and imbibition as a function of saturation, viscosity ratio, and effective viscosity. Other aspects of the dynamics of two-phase flow such as trapping and saturation profile are also studied.  相似文献   

20.
The objective of this work is to evaluate the prediction accuracy of network modeling to calculate transport properties of porous media based on the interpretation of mercury invasion capillary pressure curves only. A pore-scale modeling approach is used to model the multi-phase flow and calculate gas/oil relative permeability curves. The characteristics of the 3-D pore-network are defined with the requirement that the network model satisfactorily reproduces the capillary pressure curve (Pc curve), the porosity and the permeability. A sensitivity study on the effect of the input parameters on the prediction of capillary pressure and gas/oil relative permeability curves is presented. The simulations show that different input parameters can lead to similarly good reproductions of the experimental Pc, although the predicted relative permeabilities Kr are somewhat widespread. This means that the information derived from a mercury invasion Pc curve is not sufficient to characterize transport properties of a porous medium. The simulations indicate that more quantitative information on the wall roughness and the node/bond aspect ratio would be necessary to better constrain the problem. There is also evidence that in narrow pore size distributions pore body volume and pore throat radius are correlated while in broad pore size distributions they would be uncorrelated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号