首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Generation and transport of high-current electron beams are investigated in gas-filled diodes with plasma emitters based on arc and glow discharges. A space-charge neutralized beam with a current up to 1 kA was produced in a diode with a plasma emitter based on an arc discharge for an accelerating voltage of 15 kV. The beam is constricted from 8 cm down to 1 cm in diameter by a self-magnetic field and is transported through a distance of over 20 cm with an efficiency of 70%. A beam with a current of 80 A and a current density up to 100 A/cm2 was produced in a glow-discharge diode. The beam was transported through a distance of 30 cm in a weak axial magnetic field with induction B = 0.015 T.  相似文献   

2.
The generation of a 250-μs-wide electron beam in a plasma-emitter diode is studied experimentally. A plasma was produced by a pulsed arc discharge in hydrogen. The electron beam is extracted from a circular emission hole 3.8 mm in diameter under open plasma boundary conditions. The beam accelerated in the diode gap enters into a drift space in the absence of an external magnetic field through a hole 4.1 mm in diameter made in the anode. The influence of electron current deposition at the edge of the anode hole on the beam’s maximum attainable current, above which the diode gap breaks down, is studied for different accelerating voltages and diode gaps. The role of processes occurring on the surface of the electrodes is shown. For an accelerating voltage of 32 kV, a mean emission current density of 130 A/cm2 is achieved. The respective mean strength of the electric field in the acceleration gap is 140 kV/cm. Using the POISSON-2 software package, the numerical simulation of the diode performance is carried out and the shape of steady plasma emission boundaries in the cathode and anode holes is calculated. The influence of the density of the ion current from the anode plasma surface on the maximum attainable current of the electron beam is demonstrated.  相似文献   

3.
Stable ignition and sustention of a pulsed discharge with a current of up to 180 A and duration of 12 μs at a pressure of 10−1–10−2 Pa are achieved in a glow-discharge plasma cathode with the help of an auxiliary initiating discharge. An electron emission current density of up to 100 A/cm2 and accelerating voltageof 15 kV are obtained in a gas-filled diode based on this type of a plasma cathode. An electron beam witha neutralized space charge can be transported almost without losses in a weak axial magnetic field alonga plasma channel formed due to the gas ionization by the accelerated electrons over a distance of up to 30 cm.  相似文献   

4.
太赫兹源场致发射电子源   总被引:1,自引:1,他引:0       下载免费PDF全文
通过粒子模拟(PIC)软件模拟计算了在ps级别下二极与三极结构碳纳米管场致发射的电流密度与电子注聚焦性能。阳极电压在2 kV时,二极结构下电流密度达到1.85 A/cm2;三极结构下,栅压700 V时发射电流密度达到2.3 A/cm2,且在一定的三极结构参数与电极电压下,可以获得较好的电子注聚束效果。通过碳纳米管二极管发射实验,获得了6.6 A/cm2的发射电流密度,总发射电流达到52.1 mA,可以为太赫兹器件提供连续发射的电子注。  相似文献   

5.
We analyze the properties of a high-current electron beam formed in an electron source based on a plasma-filled diode and a linear pulsed transformer. The beam parameters are determined by measuring bremsstrahlung X-rays and the beam current, as well as the photographs of the diode gap in the optical range, of the anode in X-rays, and beam autographs. A beam with a current of ~100 kA and a mean electron energy exceeding 0.7 MeV for an accelerating voltage amplitude of ~1 MV is obtained. The diameter of the generated beam is ~1 cm. The electron beam from the plasma-filled diode makes it possible to attain a high anode power density (>1010 W/cm2) for exciting shock waves, for obtaining high pressures, and for generating powerful X-rays.  相似文献   

6.
We report on the results of analysis of propagation of an electron beam from a plasma-filled diode in the absence of the metal anode between the regions of beam generation and transportation. The diode parameters are 160 kA, 400 kV, and 50 GW. At a distance exceeding 10 cm behind the generation region, a beam current of 100 kA to the target and an energy density of 20 J/cm2 are attained for the beam cross-sectional area of about 200 cm2. The possibility of varying the beam current and energy density by changing the distance to the target is demonstrated.  相似文献   

7.
An analyzer is created for time-resolved measurements of the electron pitch-angles in high-current microsecond relativistic electron beams in a strong magnetic field. The electron pitch-angles in a 500-keV relativistic electron beam with a current density of ∼1 kA/cm2 and a 1-μs flat-top current profile are measured. The diode proposed previously by the authors allows one to produce a high-current electron beam in which pitchangles vary only slightly with time and over the beam cross section.  相似文献   

8.
Conditions are studied under which an electron beam and a volume discharge with a subnanosecond rise time of a voltage pulse are produced in air under atmospheric pressure. It is shown that the electron beam appears in a gas-filled diode at the front of the voltage pulse in ∼0.5 ns, has a half-intensity duration of ≤0.4 ns and an average electron energy of ∼0.6 of the voltage across the gas-filled diode, and terminates when the voltage across the gap reaches its maximum value. The electron beam with an average electron energy of 60 to 80 keV and a current amplitude of ≥70 A is obtained. It is assumed that the electron beam is formed from electrons produced in the gap due to gas ionization by fast electrons when the intensity of the field between the front of the expanding plasma cloud and the anode reaches its critical value. A nanosecond volume discharge with a specific power input of ≥400 MW/cm3, a density of the discharge current at the anode of up to 3 kA/cm2, and specific energy deposition of ∼1 J/cm3 over 3 to 5 ns is created.  相似文献   

9.
Ion emission from the plasma of a low-pressure (≈5×10−2 Pa) glow discharge with electrons oscillating in a weak (≈1 mT) magnetic field is studied in relation to the cold hollow cathode geometry. A hollow conic cathode used in the electrode system of a cylindrical inverted magnetron not only improves the extraction of plasma ions to ≈20% of the discharge current but also provides the near-uniform spatial distribution of the ion emission current density. The reason is the specific oscillations of electrons accelerated in the cathode sheath. They drift in the azimuth direction along a closed orbit and simultaneously move along the magnetic field toward the emitting surface of the plasma. A plasma emitter with a current density of ≈1 mA/cm2 over an area of ≈100 cm2 designed for an ion source with an operating voltage of several tens of kilovolts is described.  相似文献   

10.
The 4H-SiC junction barrier Schottky (JBS) diodes terminated by field guard rings and offset field plate are designed, fabricated and characterized. It is shown experimentally that a 3-μm P-type implantation window spacing gives an optimum trade-off between forward drop voltage and leakage current density for these diodes, yielding a specific on-resistance of 8.3 mΩ·cm2. A JBS diode with a turn-on voltage of 0.65 V and a reverse current density less than 1 A/cm2 under 500 V is fabricated, and the reverse recovery time is tested to be 80 ns, and the peak reverse current is 28.1 mA. Temperature-dependent characteristics are also studied in a temperature range of 75 ℃-200 ℃. The diode shows a stable Schottky barrier height of up to 200 ℃ and a stable operation under a continuous forward current of 100 A/cm2.  相似文献   

11.
An electron-emitting source generating a low-energy beam measuring 1–3 cm in diameter, with current up to 300 A, pulse duration within 50–200 μs, and pulse repetition frequency up to 10 Hz is investigated in a gas-filled diode with a mesh plasma cathode at the accelerating voltage up to 25 kV. The beam is transported in a longitudinal pulsed magnetic field to a distance of up to 30 cm towards the region of its interaction with a solid. For the current densities up to 100 A/cm2, it provides the power density as high as 10–100 J/cm2 sufficient to melt surfaces of metals, alloys, and composite (metalloceramic) materials within one or a few pulses. This makes this beam useful for modification of material surfaces and articles made thereof. Using the methods of optical, scanning and diffraction electron microscopy, by building micro-and nanohardness profiles, and via identification of the treated surface roughness, the phase composition and the substructure state of the materials subjected to pulsed low-energy e-beam of sub-millimeter durations are investigated. Formation of submicro-and nanocrystalline multi-phase structure is observed, which ensures a multiple increase in physico-mechanical and tribological characteristics of the treated material. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 60–70, May, 2008.  相似文献   

12.
Discharges with liquid nonmetallic electrodes of much interest for applications are investigated. It is found that a dc discharge between two streams of tap water in air at atmospheric pressure is stable at a currentof 40≤I≤100 mA. The discharge exists in the diffuse (volume) form with a relatively low current density (∼0.2 A/cm2) and a high (above one kilovolt) voltage drop across the air gap (∼1 cm) between the water electrodes. The current density and voltage depend only slightly on the discharge current. Probe measurements show that three regions can be distinguished in the discharge: two electrode regions (1–2 mm in length) and a discharge column with a constant electric field of ≈0.8 kV/cm (i.e., E/N≈20 Td, because the gas in the discharge is heated up to 1500–2000 K). The average electric field strength near the electrodes is E≈2–3×103 V/cm (E/N≈60–80 Td). The charged particle density in the column is n ∼ 1012 cm−3. The probe measurements of n agree with the previous microwave absorption measurements. The water vapor concentration in the column is also estimated from probe measurements.  相似文献   

13.
A toroidal theta-pinch discharge with superposed non-helical hexapole field is investigated. The characteristic data of the discharge are: major diameter 52 cm, minor inner diameter of the vacuum vessel 6 cm, maximum magnetic field between 10 and 21 kG, rise time (quarter-cycle) 3.0 μs, maximum temperature between 40 and 100 eV, maximum density between 1 and 3×1016 cm?3, beta-values between 0.3 and 1. The plasma confinement times are determined by measuring particle density, temperature and plasma radius. The confinement times are compared with those of models which account for cusp losses, resistive losses, and Bohm diffusion. Measured confinement times are consistent with those expected from cusp losses with a cusp slit-width of one ion gyro-radius. Above electron temperatures of 20 eV, resistive losses are negligible. Bohm diffusion is not consistent with measurements, but is of the same order of magnitude.  相似文献   

14.
The field emission properties of Ti-DLC films in diode and coplanar device structures were studied. An emission current density of 1.14 A/cm2 could be obtained at an applied field of 33 V/μm and the threshold field was 24 V/μm for the coplanar emission structure. The silicon substrate was found to limit the emission current in the diode structure because of its high resistivity.  相似文献   

15.
The effect of very high energy electron beam irradiation on the field emission characteristics of multi-walled carbon nanotubes (MWCNTs) has been investigated. The MWCNTs films deposited on silicon (Si) substrates were irradiated with 6 MeV electron beam at different fluence of 1×1015, 2×1015 and 3×1015 electrons/cm2. The irradiated films were characterized using scanning electron microscope (SEM) and micro-Raman spectrometer. The SEM analysis clearly revealed a change in surface morphology of the films upon irradiation. The Raman spectra of the irradiated films show structural damage caused by the interaction of high-energy electrons. The field emission studies were carried out in a planar diode configuration at the base pressure of ∼1×10−8 mbar. The values of the threshold field, required to draw an emission current density of ∼1 μA/cm2, are found to be ∼0.52, 1.9, 1.3 and 0.8 V/μm for untreated, irradiated with fluence of 1×1015, 2×1015 and 3×1015 electrons/cm2. The irradiated films exhibit better emission current stability as compared to the untreated film. The improved field emission properties of the irradiated films have been attributed to the structural damage as revealed from the Raman studies.  相似文献   

16.
The terahertz (THz) frequency radiation production as a result of nonlinear interaction of high intense laser beam with low density ripple in a magnetized plasma has been studied. If the appropriate phase matching conditions are satisfied and the frequency of the ripple is appropriate then this difference frequency can be brought in the THz range. Self focusing (filamentation) of a circularly polarized beam propagating along the direction of static magnetic field in plasma is first investigated within extended‐paraxial ray approximation. The beam gets focused when the initial power of the laser beam is greater than its critical power. Resulting localized beam couples with the pre‐existing density ripple to produce a nonlinear current driving the THz radiation. By changing the strength of the magnetic field, one can enhance or suppress the THz emission. The expressions for the laser beam width parameter, the electric field vector of the THz wave have been obtained. For typical laser beam and plasma parameters with the incident laser intensity ≈ 1014 W/cm2, laser beam radius (r0) = 50 μm, laser frequency (ω0) = 1.8848 × 1014rad/s, electron plasma (low density rippled) wave frequency (ω0) = 1.2848 × 1014 rad/s, plasma density (n0) = 5.025 × 1017cm–3, normalized ripple density amplitude (μ)=0.1, the produced THz emission can be at the level of Giga watt (GW) in power (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
In this work,a portable slit imaging system is developed to study both the electron beam diameter and the profile of the newly developed Shanghai Electron Beam Ion Trap (Shanghai EBIT).Images are detected by a charge coupled device (CCD) sensitive to both X rays and longer wavelength photons (up to visible).Large scale ray tracings were conducted for correcting the image broadening effects caused by the finite slit width and the finite width of the CCD pixels.A numerical de-convolution method was developed to analyse and reconstruct the electron beam density distribution in the EBIT.As an example of the measured beam diameter and current density,the FWHM (full width at half maximum) diameter of the electron beam at 81 keV and 120 mA is found to be 76.2 μm and the density 2.00 × 10 3 A·cm 2,under a magnetic field of 3 T,including all corrections.  相似文献   

18.
利用低压化学气相沉积方法在以Au作催化剂的Si衬底上生长了InN纳米线. 扫描电子显微镜分析表明,这些纳米线的直径在60—100 nm的范围内, 而其长度大于1 μm.高分辨透射电子显微镜图像表明,合成的纳米线中含有六方相和立方相的InN晶体.这些InN纳米线具有良好的场发射特性和稳定的场发射电流,其开启场为10.02 V/μm(电流密度为10 μA/cm2),在24 V/μm 的电场下,其电流密度达到5.5 mA/cm2.此外,对InN纳米线的场发射机理也进行了讨论. 关键词: InN纳米线 场电子发射 非线性Fower-Nordheim曲线  相似文献   

19.
The brush cathode helium discharge in the magnetic field has been operated stably at discharge currents larger than those without magnetic field. The diameter of the plasma column has been determined by the configuration of the magnetic field. The measurements of the spectral intensities of the recombination continuum followed by the 23S-n3P series reveals that the electron density is 1·8 × 1013 cm-3 and the electron temperature is 0·17 eV at a discharge current of 500 mA and a pressure of 0·9 torr for a magnetic flux density of 1·3 kG. The principal quantum number for line merging is 20.  相似文献   

20.
Field emission studies of WO2.72 nanowires synthesized by a solvothermal method have been performed in the planar diode configuration under ultra high vacuum conditions. Fowler–Nordheim plots obtained from the current-voltage characteristics follow the quantum mechanical tunneling process and a current density of ∼8.3×106 μA/cm2 can be drawn at an applied electric field of 2 V/μm. The field enhancement factor is 33025, while the turn-on field is only 1.4 V/μm. The emission current-time plot recorded at the pre-set value of emission current of 1 μA over a period of more than 3 h exhibits an initial increase and a subsequent stabilization of the emission current. The results reveal that the WO2.72 nanowire emitters synthesized by the solvothermal method are promising cathode materials for practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号