首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By utilizing available experimental data for net energy transfer spectra for homogeneous turbulence, contributions P(, ) to the energy transfer at a wavenumber from various other wavenumbers are calculated. This is done by fitting a truncated power-exponential series in and to the experimental data for the net energy transfer T(), and using known properties of P(, ). Although the contributions P(, ) obtained by using this procedure are not unique, the results obtained by using various assumptions do not differ significantly. It seems clear from the results that for a region where the energy entering a wavenumber band dominates that leaving, much of the energy entering the band comes from wavenumbers which are about an order of magnitude smaller. That is, the energy transfer is rather nonlocal. This result is not significantly dependent on Reynolds number (for turbulence Reynolds numbers based on microscale from 3 to 800). For lower wavenumbers, where more energy leaves than enters a wavenumber band, the energy transfer into the band is more local, but much of the energy then leaves at distant wavenumbers.  相似文献   

2.
Zusammenfassung Die Oberflächenspannung von sechs reinen Substanzen — SF6, CCl3F, CCl2F2, CClF3, CBrF3 und CHClF2 — wurde mit Hilfe einer modifizierten Kapillarmethode gemessen. Die zur Berechnung der Oberflächenspannung erforderlichen Sättigungsdichten und wurden teils aus vorhandenen Zustandsgleichungen, teils aus ebenfalls gemessenen Brechungsindizes bestimmt. Die Temperaturabhängigkeit der Oberflächenspannung läßt sich durch einen erweiterten Ansatz nach van der Waals =O (Tc-T)(1+...) darstellen, wobei bei einfachen Stoffen ein eingliedriger, bei polaren und assoziierenden Stoffen ein zweigliedriger Ansatz notwendig und ausreichend ist. Für den kritischen Exponenten der Oberflächenspannung wurde ein von der molekularen Substanz weitgehend unabhängiger Wert von =1.284±0.005 gefunden.
Temperature dependence of surface tension of pure refrigerants from triple point up to the critical point
The surface tension of six fluids (SF6, CCl3F, CCl2F2, CClF3, CBrF3, CHClF2) have been measured by means of a modified capillary rise method. The liquid vapor densities, which are needed to calculate the surface tension, have partly been determined by means of refractive indices simultaneously measured in the same apparatus. The temperature dependence of the surface tension is described by an extended van der Waals power law =O(Tc-T)(1+...). For simple fluids one term and for polar and associating fluids two terms are necessary and sufficient. The critical exponent is found to be 1.284 ± 0.005 and nearly independent of the molecular structure.

Formelzeichen a2 Laplace-Koeffizient - a Parameter - BO, Bon Koeffizient der Koexistenzkurve - g Erdbeschleunigung - H Höhe, kapillare Steighöhe - LL Lorentz-Lorenz-Funktion oder Refraktionskonstante - M molare Masse - M Zahl der Meßwerte - N Zahl der unbekannten Parameter - n Brechungsindex - p Druck - R,r Radius - s Entropie - SD Standardabweichung - T, t Temperatur - u innere Energie Griechische Formelzeichen Exponent des Laplace-Koeffizienten - Exponent der Koexistenzkurve - 2. Exponent der Oberflächenspannung - Wellenlänge des Lichts - Exponent der Oberflächenspannung - D Dipolmoment - , Dichte der Flüssigkeit bzw. des Dampfes - Oberflächenspannung - reduzierte Temperatur (1-T/Tc) - 2 gewichtete Varianz Indizes c kritischer Zustand - D Differenz - m Mittelwert - T Isotherme - t Zustand am Tripelpunkt - S Zustand am Schmelzpunkt - bezogen auf Oberfläche  相似文献   

3.
Turbulent tube flow and the flow through a porous medium of aqueous hydroxypropylguar (HPG) solutions in concentrations from 100 wppm to 5000 wppm is investigated. Taking the rheological flow curves into account reveals that the effectiveness in turbulent tube flow and the efficiency for the flow through a porous medium both start at the same onset wall shear stress of 1.3 Pa. The similarity of the curves = ( w ) and = ( w ), respectively, leads to a simple linear relation / =k, where the constantk or proportionality depends uponc. This offers the possibility to deduce (for turbulent tube flow) from (for flow through a porous medium). In conjunction with rheological data, will reveal whether, and if yes to what extent, drag reduction will take place (even at high concentrations).The relation of our treatment to the model-based Deborah number concept is shown and a scale-up formula for the onset in turbulent tube flow is deduced as well.  相似文献   

4.
Zusammenfassung Für den Fall, daß sich in einem halbunendlichen Körper in der Tiefe L eine Punkt- bzw. Linienquelle befindet und daß an der Oberfläche des Körpers ein örtlich und zeitlich konstanter Wärmeübergangskoeffizient herrscht, wird das stationäre Temperaturfeld analytisch berechnet. Beim Vergleich mit einer Näherungslösung (Hilfsschicht) zeigt sich, daß nicht so sehr die Biot-Zahl Bi= · L/ als vielmehr der größte Winkel zwischen Wandnormale und Wärmestromdichte in der Hilfsschicht ein Maß für die Genauigkeit der Näherungslösung ist.
Calculation of the temperature field around a buried point- and linesource, respectively, when the boundary condition is Newton's law
The steady state temperature field in a semiinfinite body caused by a buried point- and linesource, respectively, has been analytically calculated. The comparison with a simple approach (additional-layer) shows that the greatest angle between the normal of the wall and the heat flux density in the additional-layer, describes the quality of the approach better than the Biot-number Bi=L/ does.

Formelzeichen A Fläche - Bi Biot-Zahl - C Eigenwertfunktion - E1 Exponentialintegral - exp Exponentialfunktion - i komplexe Einheit - J0 Besselfunktion nullter Ordnung und 1. Grades - L Verlegungstiefe der Punkt- bzw. Linienquelle - Q Quellstärke - r Radius - Re Realteil eines Ausdruckes - T Temperatur - t Integrationsvariable - x, y, z Ortskoordinaten - Wärmeübergangskoeffizienten an der Erdoberfläche - Laplace-Operator - Wärmeleitfähigkeit des Erdbodens - dimensionslose Temperatur - Integrationsvariable - dimensionsloser Radius - komplexe Ortskoordination Indizes 0 Erdoberfläche, senkrecht über der Quelle - 1 Lösung für das 1. Randwertproblem - 3 Lösung für das 3. Randwertproblem - 13 Zusatzfunktion - w Erdoberfläche - Umgebungstemperatur - Näherungslösung  相似文献   

5.
Zusammenfassung Die Stabilität der ebenen Couette- und der ebenen Poiseuille-Strömung nicht-newtonscher Fluide wird für kleine Störungen in der viskometrischen Ebene untersucht. Der Einfluß der Relaxationszeit der Störungen wird vernachlässigt. Es wird gezeigt, daß die ebene Couette-Strömung unabhängig von der ReZahl instabil wird, fallsd(N)/d > 4 >d gilt. Hier bedeuten die Schergeschwindigkeit,N den ersten Normalspannungskoeffizienten, die Viskosität und d die differentielle Viskosität ( d =d/d). Das gleiche Kriterium gilt mit den Daten an der Kanalwand auch für die Poiseuille-Strömung. In diesem Fall oszillieren die Eigenfunktionen in einer sehr dünnen, wandnahen Schicht und klingen im Flüssigkeitsinnern sehr rasch ab.
Summary The stability of plane Couette and plane Poiseuille flow of a non-Newtonian fluid is investigated for small perturbations in the viscometric plane. The influence of the relaxation time of the perturbations is neglected. It is shown that plane Couette flow will become unstable independently of Reynolds number ifd(N)/d > 4 d holds. Here are the rate of shear velocity,N the first normal stress coefficient, the viscosity and d the differential viscosity ( d =d/d). The same criterion holds also for plane Poiseuille flow with the data taken at the wall. In this case the eigenfunctions are oscillating in a very thin layer near the wall and decaying very rapidly in the inner region of the flow field.
Mit 11 Abbildungen  相似文献   

6.
The asymptotic nature of the elastic field is studied at the point of transition from frictional contact to frictionless contact between two different elastic bodies. The nature depends on the direction of slip, and the singular stress field appears when the body with smaller /(–1) (: the shear modulus, =3–4, : Poisson's ratio) slips towards the region of frictional contact, while no singularities appear when the direction of slip is opposite. The order of the singularity is smaller than 1/2 regardless of the level of friction.  相似文献   

7.
Zusammenfassung Für die eingefrorene laminare Grenzschichtströmung eines teilweise dissoziierten binären Gemisches entlang einer stark gekühlten ebenen Platte wird eine analytische Näherungslösung angegeben. Danach läßt sich die Wandkonzentration als universelle Funktion der Damköhler-Zahl der Oberflächenreaktion angeben. Für das analytisch darstellbare Konzentrationsprofil stellt die Damköhler-Zahl den Formparameter dar. Die Wärmestromdichte an der Wand bestehend aus einem Wärmeleitungs- und einem Diffusionsanteil wird angegeben und diskutiert. Das Verhältnis beider Anteile läßt sich bei gegebenen Randbedingungen als Funktion der Damköhler-Zahl ausdrücken.
An analytical approximation for the frozen laminar boundary layer flow of a binary mixture
An analytical approximation is derived for the frozen laminar boundary layer flow of a partially dissociated binary mixture along a strongly cooled flat plate. The concentration at the wall is shown to be a universal function of the Damkohler-number for the wall reaction. The Damkohlernumber also serves as a parameter of shape for the concentration profile which is presented in analytical form. The heat transfer at the wall depending on a conduction and a diffusion flux is derived and discussed. The ratio of these fluxes is expressed as a function of the Damkohler-number if the boundary conditions are known.

Formelzeichen A Atom - A2 Molekül - C Konstante in Gl. (20) - c1=1/(2C) Konstante in Gl. (35) - cp spezifische Wärme bei konstantem Druck - D binärer Diffusionskoeffizient - Ec=u 2 /(2hf) Eckert-Zahl - h spezifische Enthalpie - ht=h+u2/2 totale spezifische Enthalpie - h A 0 spezifische Dissoziationsenthalpie - Kw Reaktionsgeschwindigkeitskonstante der heterogenen Wandreaktion - 1= /( ) Champman-Rubesin-Parameter - Le=Pr/Sc Lewis-Zahl - M Molmasse - p statischer Druck - Pr= cpf/ Prandtl-Zahl - qw Wärmestromdichte an der Wand - qcw, qdw Wärmeleitungsbzw. Diffusionsanteil der Wärmestromdichte an der Wand - universelle Gaskonstante - R=/(2Ma) individuelle Gaskonstante der molekularen Komponente - Rex= u x/ Reynolds-Zahl - Sc=/( D) Schmidt-Zahl - T absolute Temperatur - Td=h A 0 /R charakteristische Dissoziationstemperatur - u, v x- und y-Komponenten der Geschwindigkeit - U=u/u normierte x-Komponente der Geschwindigkeit - x, y Koordinaten parallel und senkrecht zur Platte Griechische Symbole - =A/ Dissoziationsgrad - Grenzschichtdicke - 2 Impulsverlustdicke - Damköhler-Zahl der Oberflächenreaktion - =T/T normierte Temperatur - =y/ normierter Wandabstand - Wärmeleitfähigkeit - dynamische Viskosität - , * Ähnlichkeitskoordinaten - Dichte - Schubspannung Indizes A auf ein Atom bezogen - M auf ein Molekül bezogen - f auf den eingefrorenen Zustand bezogen - w auf die Wand bezogen - auf den Außenrand der Grenzschicht bezogen  相似文献   

8.
Zusammenfassung Krischer hat die kapillare Flüssigkeitsbewegung als Potentialströmung beschrieben, deren Ursache ein Feuchtegefälle ist und führte als Stoffeigenschaft die Flüssigkeitsleitzahl als Funktion des Feuchtegehaltes ein. Trennt man durch einen modifizierten Ansatz Kapillar- und Reibungskräfte, so erhält man Kapillarfunktionen, die für den Fall der stationären Strömung bei horizontaler Flüssigkeitsbewegung oder bei lotrechter Flüssigkeitsbewegung unter Vernachlässigung der Schwerkraft in der Krischerschen Flüssigkeitsleitzahl (Kapillarleitkoeffizient) zusammengefaßt werden können.Diese Kapillarfunktionen für Wasser wurden von Quarzsand, Ziegel, Kalksandstein, Gasbeton und Bimsbeton ermittelt und der Kapillarleitkoeffizient als Funktion des Feuchtegehaltes für den Befeuchtungsvorgang angegeben. Zur experimentellen Bestimmung des Feuchtegehaltes war das Durchstrahlungsverfahren mit Gammastrahlen gewählt worden, um den volumenbezogenen Feuchtegehalt während eines quasistationären Vorganges der kapillaren Flüssigkeitsbewegung in Abhängigkeit von Zeit und Ort ohne Störung des Vorganges ermitteln zu können.
Results of investigations on the capillary motion of moisture in building materials
Krischer described the capillary motion of moisture as a water transfer proportional to the gradient of water content by volume, and defined a coefficient of capillary conductivity as a function of moisture content. Equations of general validity, however, can be developed by separation in terms for capillary and gravity forces and capillary resistance. These capillary functions can be transferred in the coefficient for processes with horizontal motion and for those cases where gravity does not have any impact on the motion in small capillary pore spaces.The capillary functions and the coefficients of capillary conductivity for quasi-steady processes of humidification were determined of quartz sand, brick, sandlime brick, cellular concrete and pumice concrete. The temporally and locally changing moisture content during capillary rising tests was measured non-destructively by means of the attenuation effect of penetrating gamma rays.

Formelzeichen F Stoffquerschnitt - H() feuchtigkeitsabhängige maximale kapillare Steighöhe - Hmax maximale kapillare Steighöhe beim maximalen Feuchtegehalt - I0 Intensität der auffallenden Gammastrahlung - I Intensität der durchfallenden Gammastrahlung - R() feuchtigkeitsabhängiger kapillarer Reibungskoeffizient - Rmax kapillarer Reibungskoeffizient beim maximalen Feuchtegehalt - V Volumstrom - h kapillare Steighöhe - qS Volumanteil des Feststoffes - qW Volumanteil des Wassers - qL Volumanteil der Luft - s Weglänge - t Zeit - x Schichtdicke - y Impulszahl - Neigungswinkel gegen die Lotrechte - statistischer Fehler bei der Impulsmessung - Kapillarleitkoeffizient bzw. Flüssigkeitsleitzahl na ch Krischer - Schwächungskoeffizient für Gammastrahlen - Dichte - / Massenschwächungskoeffizient - volumenbezogener Feuchtegehalt - max maximaler volumenbezogener Feuchtgehalt - S Schwächungskoeffizient des Feststoffes - W Schwächungskoeffizient des Wassers - L Schwächungskoeffizient der Luft Herrn Professor Dr.-Ing. H. Glaser, Stuttgart, zum 70. Geburtstag gewidmet.Die Untersuchungen erfolgten mit Mitteln der AIF (Arbeitsgemeinschaft industrieller Forschungsvereinigungen e.V., Köln). Der Aufbau der Versuchs-anordnung und die Gammastrahlungsmessungen mit Auswertung wurden von H. Perk durchgeföhrt, der zugleich der för den Strahlenschutz Verantwortliche des Instituts im Sinne des § 20 der I. Strahlenschutzverordnung ist.  相似文献   

9.
Summary The analysis of [1] is extended to cover viscous flow for both plane twodimensional and axisymmetric flow. The equations used are the Navier-Stokes equations in streamwise coordinates, except that for simplicity terms of order are neglected, where is a coefficient of viscosity and the flow direction. The supersonic combustion chamber of [1] is used as an example, but the technique of specifying the streamlines in advance has to be modified for a boundary layer with pressure gradient. Thermal conductivity is included but does not have a very important effect. Flow separation is indicated in some circumstances.
Übersicht Das Rechenverfahren von [1] wird erweitert auf Strömungen mit Reibung und zwar für zweidimensionale ebene und rotationssymmetrische Strömungen. Benutzt werden die Navier-Stokesschen Gleichungen in Stromlinienkoordinaten; zur Vereinfachung werden Glieder der Größenordnung vernachlässigt, wobei der Reibungskoeffizient und die Richtung der Strömung sind. Als Beispiel dient die Überschallbrennkammer von [1]. Das Verfahren, im voraus Stromlinien festzulegen, muß bei Grenzschichten mit Druckgradient abgeändert werden. Wärmeleitfähigkeit wird berücksichtigt, aber ihr Einfluß ist gering. In einigen Fällen wird Strömungsablösung vorausgesagt.
  相似文献   

10.
This paper presents a theoretical and numerical investigation of the natural convection boundary-layer along a vertical surface, which is embedded in a porous medium, when the surface heat flux varies as (1 +x 2)), where is a constant andx is the distance along the surface. It is shown that for > -1/2 the solution develops from a similarity solution which is valid for small values ofx to one which is valid for large values ofx. However, when -1/2 no similarity solutions exist for large values ofx and it is found that there are two cases to consider, namely < -1/2 and = -1/2. The wall temperature and the velocity at large distances along the plate are determined for a range of values of .Notation g Gravitational acceleration - k Thermal conductivity of the saturated porous medium - K Permeability of the porous medium - l Typical streamwise length - q w Uniform heat flux on the wall - Ra Rayleigh number, =gK(q w /k)l/(v) - T Temperature - Too Temperature far from the plate - u, v Components of seepage velocity in the x and y directions - x, y Cartesian coordinates - Thermal diffusivity of the fluid saturated porous medium - The coefficient of thermal expansion - An undetermined constant - Porosity of the porous medium - Similarity variable, =y(1+x ) /3/x 1/3 - A preassigned constant - Kinematic viscosity - Nondimensional temperature, =(T – T )Ra1/3 k/qw - Similarity variable, = =y(loge x)1/3/x 2/3 - Similarity variable, =y/x 2/3 - Stream function  相似文献   

11.
Zusammenfassung Die mittleren und örtlichen Wärmeübergangszahlen in längsangeströmten Stabbündeln wurden theoretisch und experimentell untersucht. Nach Aufsuchen neuer Einflußgrößen wurden Beziehungen entwickelt, welche die konvektive Wärmeübertragung in Bündeln verschiedenster Anordnung zu beschreiben vermögen. Die vorgeschlagenen Berechnungsverfahren wurden mit eigenen Meßergebnissen sowie mit Meßwerten aus dem betreffenden Schrifttum verglichen. - Der erste Teil befaßt sich mit den über den Stabumfang gemittelten Wärmeübergangszahlen.
Convective heat transfer in rod clusters with turbulent axial coolant flowPart I: Mean values over the rod perimeter
Local and average heat transfer coefficients in rod bundles with axial coolant flow have been investigated analytically and experimentally. Based on new parameters correlations have been developed for the prediction of heat transfer in clusters with different rod arrangement. The proposed calculation method has been compared with the results of own measurements and with data from the relevant literature. Part I deals with the mean heat transfer coefficients over the rod perimeter.

Formelzeichen Symbol SI-Einheit Beschreibung - a m Breite des Kanalquerschnittes - B Geometrischer Parameter definiert in Gl. 12 - b m Länge des Kanalquerschnittes - C Konstante in den Gln. 4 und 6 - C1 Konstante in Gl. 22 - C2 Konstante in Gl. 22 - cp J/kg °K isobare spez. Wärmekapazität - DA m Außendurchmesser des Ringspaltes - Dh m Hydraulischer Durchmesser definiert in Gl. 5 - m Mittlerer hydraulischer Durchmesser der den Stab umgebenden Unterkanäle. Definiert in Gl. 11 - Di m Innendurchmesser des Ringspaltes - Dr m Rohrdurchmesser - d m Stabdurchmesser - F m2 Querschnittsfläche - G Korrekturfunktion für die mittlere Wärmeübergangszahl. Definiert in Gl. 10 - g m/s2 Erdbeschleunigung - H m Höhe der natürlichen Oberflächenrauhigkeit - k Exponent der Reynoldszahl in den Gln. 4 und 6 - l Exponent der Prandtlzahl in den Gln. 4 und 6 - Nu Nusseltzahl - Über den Stabumfang gemittelte Nusseltzahl, entsprechenda - P m Abstand der Stabzentren - Pr Prandtlzahl - p N/m2 Druck - Q W Heizleistung - Re Reynoldszahl - Mittlere Reynoldszahl der den Stab umgebenden Unterkanäle bezogen auf ¯Dh - T °C Temperatur - Tm °C Mit dem Wärmemassenstrom gemittelte Flüssigkeitstemperatur - °C Mittlere Flüssigkeitstemperatur der den Stab umgebenden Unterkanäle - TW °C Wandtemperatur - °C Über den Stabumfang gemittelte Wandtemperatur - U m Benetzter Umfang - m/s Geschwindigkeit - wM m/s Mittlere Geschwindigkeit - m/s Maximale Geschwindigkeit - x m Koordinate in Strömungsrichtung - x m Länge des betrachteten Stabteiles - W/m2 °C Wärmeübergangszahl - W/m2°C Über den Stabumfang gemittelte Wärmeübergangszahl, entsprechend ¯Nu - W/m2°C Die mit der Kreisrohrgleichung berechnete auf ¯Re und ¯TM bezogene mittlere Wärmeübergangszahl - Rel Wärmeübergangszahlverteilung über den Stabumfang im Sinne der Gl. 11 - kg/ms Dynamische Zähigkeit - kg/ms Dynamische Zähigkeit bei der mittleren Flüssigkeitstemperatur TM - W kg/ms Dynamische Zähigkeit bei Wandtemperatur - Exponent des Temperaturverhältnisses TW/TM - * Exponent des Zähigkeitsverhältnisses wWm - W/m °C Wärmeleitzahl - Exponent der Reynoldszahl in Gl. 22 - Exponent der Prandtlzahl in Gl. 22 - kg/m3 Dichte - Zentriwinkel des Stabes - 2 Laplace-Operator (div grad) Indizes i 1... k Anzahl Unterkanäle - M Mittelwert - W An der beheizten Wand  相似文献   

12.
Fully developed turbulent flow and heat transfer to air and water in ducts of elliptical cross section have been investigated experimentally. For the ducts of aspect ratio 2.5 1 and larger, a reduction in the overall heat transfer rate was found in the lower turbulent Reynold's number range (Re<25,000). Similar effects have been noted by investigators of narrow triangular cross sections where flow measurements indicated the possible co-existence of laminar and turbulent flow resulting in localised increases in thermal resistance. It was found that the analogy between momentum and heat transfer could not be applied directly to the larger aspect ratio ducts where significant circumferential variations of wall temperature occurred.
Zusammenfassung Voll entwickelte turbulente Strömung und Wärmeübertragung an Luft und Wasser in elliptischen Kanälen wurden experimentell untersucht. Für Kanäle mit Achsenverhältnissen von 2,5 1 und größer fand man eine Verringerung des Wärmedurchgangs im Bereich geringer Reynolds-Zahlen (Re < 25 000). Ähnliche Effekte waren von anderen Autoren in engen Dreieckskanälen gefunden worden, wobei man aus Strömungsmessungen das gleichzeitige Auftreten von laminarer und turbulenter Strömung mit örtlicher Zunahme des thermischen Widerstandes folgern konnte. Die Analogie zwischen Impuls- und Wärmeübertragung konnte nicht unmittelbar auf Kanäle mit großem Achsenverhältnis, bei denen die Umfangstemperatur beträchtlich variierte, angewendet werden.

Nomenclature A cross-sectional area - b duct wall thickness - Cp specific heat at constant pressure - de equivalent diameter of noncircular cross-section (=4A/p) - f Fanning friction coefficient - h local heat transfer coefficient (=qw/(Tw-Tb)) - ¯h average circumferential heat transfer coefficient - k thermal conductivity of fluid - kw thermal conductivity of wall material - K* wall conductivity parameter (= kwb/kde) - p wetted perimeter - qw wall heat flux - Tb bulk fluid temperature - Tw local wall temperature - absolute viscosity - kinematic viscosity (=/) - mass density - Nu Nusselt number (= h de/k) - Nu average circumferential Nusselt number (= ¯h de/k) - Pr Prandtl number (= Cp/k) - Re Reynolds number (= de/) - St Stanton number (= Nu/Re · Pr)  相似文献   

13.
Zusammenfassung Es wird der Einfluß der Filmkondensation auf die laminare Einlaufströmung in waagerechten Rohren untersucht. Die Einlauflänge verkürzt sich mit zunehmender Kondensationsrate auf Grund der starken Abnahme der Dampfgeschwindigkeit, deren aufstauende Wirkung die der Grenzschichtabsaugung durch Kondensation überragt. Die Entwicklung des Druckes, der Kondensatfilm- und Grenzschichtdicke, sowie die Abnahme des Dampfgehaltes werden in Abhängigkeit von der Lauflänge und der Kondensationsintensität diskutiert.
Influence of film condensation on the laminar flow in the entrance of a tube
The influence of film condensation on the flow in the entrance region of a tube is studied. The inlet region becomes shorter with increasing condensation rate, due to a drastic reduction of the vapour speed, which tends to support the growth of the vapour boundary layer in spite of the opposite effect of suction. The dependence of the pressure, the liquid film thickness, the vapour boundary layer thickness and the vapour quality is studied as a function of the streamwise coordinate and the condensation rate.

Formelzeichen cpL spezifische Wärmekapazität des Kondensates - E=cpL T/PrLv Parameter der Kondensationsintensität - H Enthalpiestrom - hv Verdampfungsenthalpie - lE Einlauflänge - g Erdbeschleunigung (= 0 für waagerechtes Rohr) - Mges=ML + MV gesamter Massenstrom - ML Massenstrom des Kondensates - MV Massenstrom des Dampfes - p Druck - p=p(z)–p(z=0) Druckdifferenz - PrL Prandtl-Zahl des Kondensates - Q Wärmestrom - r Koordinate in Radiusrichtung - R Rohrradius - Re0=u0R// Reynolds-Zahl - Srev reversible Entropieströmung - Sirr Entropieproduktion der reibungsbehafteten Strömung - Ts Sattdampftemperatur - Tw Temperatur der Rohrinnenwand - T=Ts–Tw treibende Temperaturdifferenz - u Geschwindigkeit in Dampf - u0 Geschwindigkeit im Einströmquerschnitt - ui Geschwindigkeit an der Filmoberfläche - uK Geschwindigkeit im Dampfkern - uL Geschwindigkeit im Kondensatfilm - vi Absauggeschwindigkeit an der Phasengrenze - z Koordinate in Strömungsrichtung - z*=z/R·Re0 dimensionslose Strömungskoordinate - Dicke der Dampfgrenzschicht - L Dicke des Kondensatfilms - Viskosität des Dampfes - L Viskosität des Kondensates - Dichte des Dampfes - L Dichte des Kondensates  相似文献   

14.
Zusammenfassung Für ein reagierendes Binärgemisch konstanter Dichte werden die Reynolds'schen Gleichungen angegeben. Die Transportkoeffizienten sowie die Wärmekapazitäten der beiden Komponenten werden als konstant angenommen. Für die unbekannten Reynolds'schen Terme werden Transportgleichungen angegeben. Weiter wird der Einfluß der Turbulenz auf die chemische Produktionsdichte diskutiert.
About the transfer of momentum, heat and mass in turbulent flows of binary mixturesPart I: The reynolds equations and the transport equations
The Reynolds equations for a reacting binary mixture of constant density are given. The transport coefficients as well as the specific heats of the components are assumed to be constant. Transport equations for the unknown Reynolds-terms are given. The influence of turbulence on the chemical production of species in discussed.

Formelzeichen c Massenkonzentration - cp soezifische Wärme bei konstantern Druck - D binärer Diffussionskoeffizient - h spezifische Enthalpie - ho=h + v k 2 /2 totale spezifische Enthalpie - ho Reaktionsenthalpie - jk Massendiffusionsstromvektor - k Reaktionsgeschwindigkeitskonstante - p Druck - Pr= cp/ Prandtl-Zahl - q2/2 kinetische Energie der Schwankungsbewegung - qk Energiestromvektor - R universelle Gaskonstante - Sc=/D Schmidt-Zahl - t Zeit - T absolute Temperatur - vk Geschwindigkeitsvektor - xk Ortsvektor Griechische Symbole Dissipationsfunktion - Wärmeleitfähigkeit - dynamische Viskosität - =/ kinematische Viskosität - Dichte - Produktionsdichte - jk viskoser Spannungstensor Indizes auf die Komponente bezogen - 1 auf die Komponente 1 bezogen - 2 auf die Komponente 2 bezogen - mol molekularer Anteil - tur turbulenter Anteil - res resultierender Anteil  相似文献   

15.
In this paper, a theoretical study of heat transfer to a fluid of vanishing viscosity in laminar flow in a pipe is made. The constant wall temperature boundary condition is considered in order to facilitate comparison with other classical solutions. Using velocity profiles of simple geometrical shape, the dependence of the heat transfer on velocity distribution is illustrated. Because of the nature of the idealised flow and heat transfer models, the theoretical results are applicable to all axisymmetric flows. Accordingly, some account of the possible effects of swirl on heat transfer in real flows is given.
Zusammenfassung Es handelt sich um eine theoretische Untersuchung des Wärmeübergangs in laminarer Rohrströmung bei verschwindender Viskosität. Zum Vergleich mit anderen klassischen Lösungen wurde konstante Wandtemperatur als Randbedingung vorgegeben. Unter Benutzung von Geschwindigkeitsprofilen einfacher Geometrie wurde deren Einfluß auf den Wärmeübergang ermittelt. Diese Ergebnisse sind wegen der gewählten Strömungs- und Wärmeübergangsmodelle auf alle achsensymmetrischen Strömungen anwendbar. Die mögliche Wirkung einer Wirbelströmung auf den Wärmeübergang wird diskutiert.

Nomenclature =(k/c) Thermal diffusivity - C, C 1, C2, C3, Cn Constants - c Specific heat at constant pressure - D=(2rw) Diameter - k Thermal conductivity - M n Root of Bessel Equation,J 0(Mn)=0 - r Radius - T Temperature - u, Velocity, average velocity - x Axial distance - X, R Function ofx, (r) alone - n (= 2M n/r w 2 ) Eigen value - Dynamic viscosity - (=/) Kinematic viscosity - Density - (=(T-T w)/(T1-Tw)) Dimensionless temperature - (=(TT w)/(T 1T w)) Nusselt number - Pe (=Re·Pr) Péclet number - Pr (= c/k) Prandtl number - Re(=2rw·v) Reynolds number Suffixes b Bulk - 1 Inlet - w wall  相似文献   

16.
Zusammenfassung Nach einem mehr qualitativen theoretischen Überblick über Absorption und Streuung der Strahlung an kleinen Partikeln wird gezeigt, daß sich bei kleinen optischen Dichten als analytischer Ausdruck für die Emissionszahl der Staubstrahlung ein der Gasstrahlung analoger Ausdruck ergibt. Dieses Ergebnis wird durch Messungen bestätigt. Insgesamt werden die Emissionsdaten von 20 untersuchten Kesselstäuben angegeben und interpretiert. Es werden Durchschnittswerte empfohlen, um bei Stäuben mit unbekannten Strahlungsdaten näherungsweise Austauschrechnungen durchzuführen. Die Untersuchungen gelten für Strahlungsräume von annähernd konstanter Temperatur.
Radiation of gases containing dust particles
Having presented a more qualitative short survey about absorption and scattering on small particles, it is shown that in the range of small optical thicknesses expressions for the emissivity of dust clouds are analogue to those of gases. Measurements confirm this. The emissivities of twenty different dust materials are measured and interpreted. For calculations with unknown materials average emissivity data are recommended.

Bezeichnungen A Koeffizient für Absorption bzw. Emission - B Staubbeladung, kg m–3 - d Durchmesser, m - E Koeffizient für Extinktion - E sn Intensität der schwarzen Strahlung, Watt/m2 Raumwinkel - f Querschnittfläche kugelförmiger Teilchen,d 2/4, m2 - F Spezifische Projektionsfläche 3/2 St d, m2kg–1 - I Intensität, W/m2 Raumwinkel - k Stoffkonstante, m–1/3 - k g Absorptionskoeffizient des Gases, m–1 - L Schichtstärke, m - L ä Äquivalente Schichtstärke, m - N Teilchenzahl pro Volumeneinheit, m–3 - p Größenparameter d/ - S Streukoeffizient - S V Streukoeffizient in Vorwärtsrichtung - S R Streukoeffizient in Rückwärtsrichtung - T absolute Temperature, °K - G Absorptionszahl des Gases - St Absorptionszahl des Staubes, St=St - G Emissionszahl des Gases - St Emissionszahl des Staubes - W Emissionszahl der Wand - 0,5 Bezugswellenlänge, , m - Wellenlänge, , m - St Staubdichte, kg m–3 - Optische DichteA F B L, A f N L  相似文献   

17.
In this paper we continue previous studies of the closure problem for two-phase flow in homogeneous porous media, and we show how the closure problem can be transformed to a pair of Stokes-like boundary-value problems in terms of pressures that have units of length and velocities that have units of length squared. These are essentially geometrical boundary value problems that are used to calculate the four permeability tensors that appear in the volume averaged Stokes' equations. To determine the geometry associated with the closure problem, one needs to solve the physical problem; however, the closure problem can be solved using the same algorithm used to solve the physical problem, thus the entire procedure can be accomplished with a single numerical code.Nomenclature a a vector that maps V onto , m-1. - A a tensor that maps V onto . - A area of the - interface contained within the macroscopic region, m2. - A area of the -phase entrances and exits contained within the macroscopic region, m2. - A area of the - interface contained within the averaging volume, m2. - A area of the -phase entrances and exits contained within the averaging volume, m2. - Bo Bond number (= (=(–)g2/). - Ca capillary number (= v/). - g gravitational acceleration, m/s2. - H mean curvature, m-1. - I unit tensor. - permeability tensor for the -phase, m2. - viscous drag tensor that maps V onto V. - * dominant permeability tensor that maps onto v , m2. - * coupling permeability tensor that maps onto v , m2. - characteristic length scale for the -phase, m. - l characteristic length scale representing both and , m. - L characteristic length scale for volume averaged quantities, m. - n unit normal vector directed from the -phase toward the -phase. - n unit normal vector representing both n and n . - n unit normal vector representing both n and n . - P pressure in the -phase, N/m2. - p superficial average pressure in the -phase, N/m2. - p intrinsic average pressure in the -phase, N/m2. - p p , spatial deviation pressure for the -phase, N/m2. - r 0 radius of the averaging volume, m. - r position vector, m. - t time, s. - v fluid velocity in the -phase, m/s. - v superficial average velocity in the -phase, m/s. - v intrinsic average velocity in the -phase, m/s. - v v , spatial deviation velocity in the -phase, m/s. - V volume of the -phase contained within the averaging volmue, m3. - averaging volume, m3. Greek Symbols V /, volume fraction of the -phase. - viscosity of the -phase, Ns/m2. - density of the -phase, kg/m3. - surface tension, N/m. - (v +v T ), viscous stress tensor for the -phase, N/m2.  相似文献   

18.
Übersicht Ausgehend von bekannten Fundamentallösungen für Platten bzw. Scheiben wird die Erstellung singulärer Ansatzfunktionen gezeigt, wie sie für finite Näherungsverfahren benötigt werden, die von den Funktionalen der totalen Energie bzw. der komplementären Energie ausgehen. Das Vorgehen wird eingehend an Kreiszylinderschalen erläutert.
Summary Starting from known fundamental solutions of plates the construction of singular basic estimate functions is shown. These are necessary in finite approximation methods basing on the functionals of total energy or complementary energy. The proceeding is explained in detail in a cylindrical shell analysis.
  相似文献   

19.
Zusammenfassung Zur Klärung der physikalischen Vorgänge im Verdampferteil einer Filmverdampfungsbrennkammer wird in Erweiterung der adiabaten Verdunstung der Fall der einseitig benetzten ebenen Platte behandelt, die sowohl im Gleichals auch im Gegenstrom von der heißen Außenluft umströmt wird. Die für beide Strömungsfälle maßgebenden Grenzschichtgleichungen werden simultan unter Berücksichtigung temperatur- und konzentrationsabhängiger Stoffwerte mit einem impliziten Differenzenverfahren gelöst. Dabei ergeben sich für den Gleichstrom ähnliche Lösungen des gekoppelten Gleichungssystems, die mit den ähnlichen, für die adiabate Verdunstung geltenden Lösungen verglichen werden. Die Berechnung der durch den Stoffübergang beeinflußten Grenzschicht parameter zeigt, daß das Modell der Gegenstromanordnung, bei der sich nichtähnliche Profile entlang der Filmoberfl äche einstellen, für einen möglichen Einsatz in einer Filmverdampfungsbrennkammer am besten geeignet ist.
Theoretical investigation on the binary laminar boundary-layer flow along a vaporizing liquid layer at non-adiabatic evaporation
For clarification the physical process in the evaporating part of a film-evaporation combustion-chamber in addition to the adiabatic evaporation the case of a one-sided wet plate in co- and counter-current hot air flow is presented. The boundary-layer equations for both streams are solved simultaneously with an implicit finite-difference method taking into account variable fluid properties. Thereby the similar solutions obtained for the co-current flow are compared with the corresponding similar solutions for the case of the adiabatic evaporation. Contrary to the co-current flow the counter-current flow yields non-similar solutions and the computation of the boundary-layer parameters influenced by the evaporation mass-flow shows, that the model of counter-current flow is best suitable for application in a film-evaporation combustion-chamber.

Bezeichnungen Aj, Bj Abkürzungen in der allg. Differenzen - Cj gleichung (36) - c Massenkonzentration, bezogen auf Gemischmasse - cf Dimensionsloser örtlicher Reibungsbeiwert - cp Spezifische Wärmekapazität - D12 Diffusionskoeffizient - h Enthalpie des Gasgemisches - K1, K2 Abkürzungen in der Gl. (5) - K5, K6 Abkürzungen in der Gl.(22) - L Plattenlänge - M Molmasse - m1 Massenstromdichte, verdunstende Masse je Flächen- und Zeiteinheit - m* Dimensionslose Massenstromdichte, Verdunstungsparameter nach Gl.(32) - m** Örtliche dimensionslose Massenstromdichte nach Gl. (33) - PGr Stellvertretende Größe für die Grenzschicht parameter cf, StT und Stm nach Gl. (34) - p Statischer Druck (=Summe der Partialdrücke) - p1w Sättigungsdruck an der Filmoberfläche - q Wärmestromdichte - r Verdampfungsenthalpie - r 1w * Dimensionslose Verdampfungsenthalpie nachGl.(25) - u Geschwindigkeit in x-Richtung - v Geschwindigkeit in y-Richtung - x Längskoordinate - ¯x Längskoordinate für den Gegenstrom s. Bild 14 - xA Wärmeisolierte Anlaufstrecke s. Bild 14 - x* Dimensionslose Längskoordinate für das Dreipunkt-Differenzenverfahren x*=x/s - y Querkoordinate - y* Normierte Querkoordinate für das Drei punkt-Differenzenverfahren y*=y/s - 1 Dimensionslose Verdrängungsdicke nach Gl.(27) - 2 Dimensionslose Impulsverlustdicke nach Gl.(28) - c Konzentrationsgrenzschichtdicke (y-Wert für =0.99) - s Strömungsgrenzschichtdicke (y-Wert für u/u=0.99) - T Temperaturgrenzschichtdicke (y-Wert für = 0.99) - T Dimensionsloser Wandabstand nach Gl.(37) - Normierte absolute Temperatur (= (T – Tw)/(T – T w) - Wärmeleitfähigkeit - Dynamische Zähigkeit - Kinematische Zähigkeit - Dichte - Schubspannung - Allgemeine abhängige Variable (s. Tabelle 1) Normierte Massenkonzentration (=(c1–c1w/(c1–c1w)) - Nu Nußelt-Zahl (= L(T/yT/y)w/(T–Tw)) - Pr Prandtl-Zahl (=cp/) - Rex Reynolds-Zahl (=ux/) - ReL Reynolds-Zahl (=uL/) - Res Reynolds-Zahl (= us/) - Sc Schmidt-Zahl (=/D12) - Stm Stanton-Zahl des Stoffübergangs nach Gl.(31) - StT Stanton-Zahl des Wärmeübergangs nach Gl.(30) Indizes 0 Bezogen auf Strömung ohne Stoffübergang - 1 Gas 1 (Benzoldampf) - 2 Gas 2 (Luft) - Ungestörter Anströmzustand der Luft - ad Charakteristische Werte des adiabaten Strömungsfalles - Geg Charakteristische Werte des Gegenstroms - Gl Charakteristische Werte des Gleichstroms - j Diskreter Punkt in y-Richtung - k Diskreter Punkt in x-Richtung - w Werte an der Plattenoberfläche - + Werte an der benetzten Plattenoberseite - – Werte an der trockenen Plattenunterseite Auszug aus der von der Fakultät für Maschinenbau und Elektrotechnik der Technischen Universität Braunschweig zur Erlangung des akademischen Grades eines Doktor-Ingenieurs genehmigten Dissertation über Theoretische Untersuchung der laminaren Zweistoffgrenzschichtströmung längs einer benetzten, ebenen Platte bei nichtadiabater Verdunstung des Diplom-Ingenieurs Klaus Pientka. Berichterstatter: Prof. Dr. phil. Dr.-Ing. E.h. H. Schlichting und Prof. Dr.-Ing. D. Hummel. - Die Dissertation wurde am 14 Juni 1976 bei der Technischen Universität eingereicht. Die mündliche Prüfung fand am 23. November 1976 statt.  相似文献   

20.
An experimental study was done to quantify the effects of a variety of background particulates on the delayed laminar-turbulent transition of a thermally stabilized boundary layer in water. A Laser-Doppler Velocimeter system was used to measure the location of boundary layer transition on a 50 mm diameter, 9:1 fineness ratio ellipsoid. The ellipsoid had a 0.15 m RMS surface finish. Boundary layer transition locations were determined for length Reynolds numbers ranging from 3.0 × 106 to 7.5 × 106. The ellipsoid was tested in three different heating conditions in water seeded with particles of four distinct size ranges. For each level of boundary layer heating, measurements of transition were made for clean water and subsequently, water seeded with 12.5 m, 38.9 m, 85.5 m and 123.2 m particles, alternately. The three surface heating conditions tested were no heating, T = 10°C and T = 15°C where T is the difference between the inlet model heating water temperature, T i, and free stream water temperature, T . The effects of particle concentration were studied for 85.5 m and 123.2 m particulates.The results of the study can be summarized as follows. The 12.5 m and 38.9 m particles has no measurable effect on transition for any of the test conditions. However, transition was significantly affected by the 85.5 m and 123.2 m particles. Above a length Reynolds number of 4 × 106 the boundary layer transition location moved forward on the body due to the effect of the 85.5 m particles for all heating conditions. The largest percentage changes in transition location from clean water, were observed for 85.5 m particles seeded water.Transition measurements made with varied concentrations of background particulates indicated that the effect of the 85.5 m particles on the transition of the model reached a plateau between 2.65 particulates/ml concentration and 4.2 particles/ml. Measurements made with 123.3 m particles at concentrations up to 0.3 part/ml indicated no similar plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号