首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Synthesis and Dynamic Behaviour of [Rh2(μ-H)3H2(PiPr3)4]+. Contributions to the Reactivity of the Tetrahydridodirhodium Complex [Rh2H4(PiPr3)4] An improved synthesis of [Rh2H4(PiPr3)4] ( 2 ) from [Rh(η3-C3H5)(PiPr3)2] ( 1 ) or [Rh(η3-CH2C6H5)(PiPr3)2] ( 3 ) and H2 is described. Compound 2 reacts with CO or CH3OH to give trans-[RhH(CO)(PiPr3)2] ( 4 ) and with ethene/acetone to yield a mixture of 4 and trans-[RhCH3(CO)(PiPr3)2] ( 5 ). The carbonyl(methyl) complex 5 has also been prepared from trans-[RhCl(CO)(PiPr3)2] ( 6 ) and CH3MgI. Whereas the reaction of 2 with two parts of CF3CO2H leads to [RhH22-O2CCF3) · (PiPr3)2] ( 8 ), treatment of 2 with one equivalent of CF3CO2H in presence of NH4PF6 gives the dinuclear compound [Rh2H5(PiPr3)4]PF6 ( 9a ). The reactions of 2 with HBF4 and [NO]BF4 afford the complexes [Rh2H5(PiPr3)4]BF4 ( 9b ) and trans-[RhF(NO)(PiPr3)2]BF4 ( 11 ), respectively. In solution, the cation [Rh2(μ-H)3H2(PiPr3)4]+ of the compounds 9a and 9b undergoes an intramolecular rearrangement in which the bridging hydrido and the phosphane ligands are involved.  相似文献   

2.
[(Cp4i Rh)2(μ‐Cl)3] [Rh(CO)2Cl2] (Cp4i = tetraisopropyl‐cyclopenta‐dienyl) has been prepared and its crystal is in the space group of Pbar with a= 0.9417 (8), b = 1.4806 (3), c = 1.5062 (2) nm, a = 92.980(10), β = 97.42(3), γ = 93.98 (3)°, V = 2.0735(18) nm3 and Z = 2. The crystal structure consists of a cation of [(η5‐Cp4i) Rh (III)(μ‐Cl)3 Rh (III) (η5‐Cp4i)]+ and an anion of [Rh (I) (CO)2 Cl2]. The two bulky tetraisopropylcyclopentadienyl ligands are in the ecliptic conformation with angle of 10.19° between two cyclopentadienyl ring planes.  相似文献   

3.
Synthesis and Spectroscopic Characterization of [Rh(SeCN)6]3– and trans ‐[Rh(CN)2(SeCN)4]3–, Crystal Structure of (Me4N)3[Rh(SeCN)6] Treatment of RhCl3 with KSeCN in acetone yields a mixture of selenocyanato‐rhodates(III), from which [Rh(SeCN)6]3– and trans‐[Rh(CN)2(SeCN)4]3– have been isolated by ion exchange chromatography on diethylaminoethyl cellulose. The X‐ray structure determination on a single crystal of (Me4N)3[Rh(SeCN)6] (trigonal, space group R3, a = 14.997(2), c = 24.437(3) Å, Z = 6) reveals, that the compound crystallizes isotypically to (Me4N)3[Ir(SCN)6]. The exclusively via Se coordinated selenocyanato ligands are bonded with the average Rh–Se distance of 2.490 Å and the Rh–Se–C angle of 104.6°. In the low temperature IR and Raman spectra the metal ligand stretching modes ν(RhSe) of (n‐Bu4N)3[Rh(SeCN)6] ( 1 ) and trans‐(n‐Bu4N)3[Rh(CN)2(SeCN)4] ( 2 ) are in the range of 170–250 cm–1. In 2 νas(CRhC) is observed at 479 cm–1. The vibrational spectra are assigned by normal coordinate analysis based on the molecular parameters of the X‐ray determination. The valence force constants are fd(RhSe) = 1.08 ( 1 ), 1.10 ( 2 ) and fd(RhC) = 3.14 mdyn/Å ( 2 ). fd(RhS) = 1.32 mdyn/Å is determined for [Rh(SCN)6]3–, which has not been calculated so far. The 103Rh NMR resonances are 2287 ( 1 ), 1680 ppm ( 2 ) and the 77Se NMR resonances are –32.7 ( 1 ) and –110.7 ppm ( 2 ). The Rh–C bonding of the cyano ligand in 2 is confirmed by a dublett in the 13C NMR spectrum at 136.3 ppm.  相似文献   

4.
Summary The carbonyl ligands in the Rh1 complexes Rh(L-L)(CO)2 [L-L=anthranilate (AA) orN-phenylanthranilate(FA) ions] are replaced by P(OPh)3 to form the mono-or disubstituted products, Rh(L-L)(CO)[P(OPh)3] and Rh(L-L)[P(OPh)3]2 respectively depending on the [P(OPh)3]/[Rh] molar ratio, at room temperature and in air. Under argon at [P(OPh)3]/[Rh]4 theortho-metallated Rh1 complex Rh[P(OPh)3]3[P(OC6H4)-OPh)2] is formed. The new route forortho-metallated Rh1 complex synthesis is described.The Rh(AA)(CO)2 complex was used as a catalyst precursor in hydroformylation of olefins.  相似文献   

5.
Furaneol®
  • 1 Registered trade mark of Firmenich SA.
  • [4-hydroxy-2,5-dimethyl-3(2H)-furanone ( 1 )], a flavour component of pineapple and strawberry, has been prepared by a two-step synthesis starting with readily available 3-hexyne-2,5-diol. By the same method 4-hydroxy-5-methyl-3(2H)-furanone ( 2 ) and 2-ethyl-4-hydroxy-5-methyl-3(2H)-furanone ( 3a ) have been prepared from 2-pentyne-1,4-diol and 3-heptyne-2,5-diol, respectively.  相似文献   

    6.
    The kinetics of the reaction between the [Rh(NH3)5H2O]3+ ion and H3PO4 was studied by 31P NMR at 323?C343 K (E a = 100.9 ± 0.3 kJ/mol, lnA = 35.7 ± 0.1). An empirical dependence of the 31P chemical shift on the equilibrium pH was found. The acid dissociation constants of the coordinated H2PO 4 ? (3.9) and H PO 4 2? ions (9.1) were estimated. The chemical shifts of the [Rh(NH3)5H2PO4]2+, [Rh(NH3)5HPO4]+, and [Rh(NH3)5PO4]0 complex ions were 8.38 ± 0.03, 10.76 ± 0.05, and 13.63 ± 0.05 ppm, respectively.  相似文献   

    7.
    Synthesis of Copper and Silver Complexes with Pentadentate N,S and Hexadentate N,O Chelate Ligands – Characterization and Crystal Structures of {Cu2[C6H4(SO2)NC(O)]2(C5H5N)4}, {Cu2[C5H3N(CHNC6H4SCH3)2]2}(PF6)2, and {Ag[C5H3N(CHNC6H4SCH3)2]}PO2F2 In the course of the reaction of copper(II)-acetate monohydrate with 2,2′-bisbenzo[d][1,3]thiazolidyl in methanol the organic component is transformed to N,N′-bis-(2-thiophenyl)ethanediimine and subsequently oxidized to the N,N′-bis-(2-benzenesulfonyl)ethanediaciddiamide H4BBSED, which coordinates in its deprotonated form two Cu2+ ions. Crystallisation from pyridine/n-hexane yields [Cu2(BBSED)(py)4] · MeOH. It forms triclinic crystals with the space group P1 and a = 995.5(2) pm, b = 1076.1(3) pm, c = 1120.7(2) pm, α = 104.17(1)°, β = 105.28(1)°, γ = 113.10(1)° and Z = 1. In the centrosymmetrical dinuclear complex the copper ions are coordinated in a square-pyramidal arrangement by three nitrogen and two oxygen atoms. The Jahn-Teller effect causes an elongation of the axial bond by approximately 30 pm. The reactions of the pentadentate ligand 2,6-Bis-[(2- methylthiophenyl)-2-azaethenyl]pyridine BMTEP with salts of copper(I), copper(II) and silver(I) yield the complexes [CU2(BMTEP)2](PF6)2, [Cu(BMTEP)]X2 (X = BF, C1O) and [Ag(BMTEP)]X (X = PO2F, ClO). [Cu2(BMTEP)2](PF6)2 crystallizes from acetone/diisopropyl- ether in form of monoclinic crystals with the space group C2/c, and a = 1833.2(3) pm, b = 2267.30(14) pm, c = 1323.5(2) pm, β= 118.286(5)°, and 2 = 4. In the dinuclear complex cation with the symmetry C2 the copper ions are tetrahedrally coordinated by two bridging BMTEP ligands. The Cu? Cu distance of 278.3pm can be interpreted with weak Cu? Cu interactions which also manifest itself in a temperature independent paramagnetism of 0.45 B.M. The monomeric silver complex [Ag(BMTEP)]PO2F2 crystallizes from acetone/thf in the triclinic space group P1 with a = 768.7(3) pm, b = 1074.0(5) pm, c = 1356.8(5) pm, α = 99.52(2)°, β = 96.83(2)°, γ = 99.83(2)° and Z = 2. The central silver ion is coordinated by one sulfur and three nitrogen atoms of the ligand in a planar, semicircular arrangement. The bond lengths Ag? N = 240.4–261.7 and Ag? S = 257.2 pm are significantly elongated in comparison with single bonds.  相似文献   

    8.
    The oxidative addition of CH3I to planar rhodium(I) complex [Rh(TFA)(PPh3)2] in acetonitrile (TFA is trifluoroacetylacetonate) leads to the formation of cationic, cis-[Rh(TFA)(PPh3)2(CH3)(CH3CN)][BPh4] (1), or neutral, cis-[Rh(TFA)(PPh3)2(CH3)(I)] (4), rhodium(III) methyl complexes depending on the reaction conditions. 1 reacts readily with NH3 and pyridine to form cationic complexes, cis-[Rh(TFA)(PPh3)2(CH3)(NH3)][BPh4] (2) and cis-[Rh(TFA)(PPh3)2(CH3)(Py)][BPh4] (3), respectively. Acetylacetonate methyl complex of rhodium(III), cis-[Rh(Acac)(PPh3)2(CH3)(I)] (5), was obtained by the action of NaI on cis-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] in acetone at −15 °C. Complexes 1-5 were characterized by elemental analysis, 31P{1H}, 1H and 19F NMR. For complexes 2, 3, 4 conductivity data in acetone solutions are reported. The crystal structures of 2 and 3 were determined. NMR parameters of 1-5 and related complexes are discussed from the viewpoint of their isomerism.  相似文献   

    9.
    4-methyl-4-trichloromethylcyclohexadiene triphenylphosphonium ylide obtained by treatment of (1-methyl-1-tricholoromethylcyclohexa-2,4-dien-4-yl)-triphenylphosphonium bromide with BunLi in THF is stabilized by the abstraction of the CCl3 group to give (p-tolyl)triphenylphosphonium cation, which was isolated as the corresponding hydroxide. Conversely, an analogous pyridinium ylide, obtained by treatment ofZ/E stereoizomericN-(1-methyl-1-trichloromethylcyclohexa-2,5-dien-4-yl)pyridiunium bromide with a base (piperidine in CD2Cl2, BunLi in THF), at temperatures above −40 °C, undergoes a novel high-yield aromatizational skeletal rearrangement with migration of the CCl3 group to position 2 of the heterocycle. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 386–388, February, 1997.  相似文献   

    10.
    Synthesis of the complex [Rh(NO2)3(NH3)3] is described. The compound crystallizes as monoclinic colorless plates. Crystal data: a = 7.176(10), b = 10.407(2), c = 10.989(2) , = 93.27°, V = 819.3(2) 3, space group , Z = 4, d calc = 2.367 g/cm3. The structure is molecular and built of neutral complexes having cis-facial configuration. The unit cell of the crystal contains two independent complexes.  相似文献   

    11.
    Open sheet and framework structures [CuX{cyclo-(MeAsO)4}] (X=Cl, Br, I) 1 – 3 and [Cu3X3{cyclo-(MeAsO)4}2] (X=Cl, Br) 4 and 5 may be prepared by self-assembly from CuX and methylcycloarsoxane (MeAsO)n in acetonitrile solution. 1 – 3 exhibit 44 nets in which (CuX)2 units are connected through μ-1 KAs1 : 2 KAs3 coordinated (MeAsO)4 ligands into large 28-membered rings. In contrast, adjacent [CuX] chains in 4 and 5 are connected into sheets by μ4-K4 As coordinated (MeAsO)4 building blocks, with μ-1 KAs1 : 2 KAs3 bridging of these layers by independent (MeAsO)4 cyclotetramers leading to the generation of a porous framework structure. 1 – 5 were characterised by X-ray structural analysis.  相似文献   

    12.
    Reaction of Cyclopentadienyl Substituted Molybdenum(V) Tetrachlorides with LiPH(2,4,6-Bu C6H2) and KPPh2(Dioxane)2. Crystal Structures of [Cp0Mo(μ? Cl)2]2 and [Cp Mo2(μ? Cl)3(μ? PPh2)] (Cp0 = C5Me4Et) The reaction of [Cp0Mo(CO)3]2 (Cp0 = C5Me4Et) and [Cp′Mo(CO)3]2 (Cp′ = C5H4Me) with PCl5 in CH3CN furnishes the Mo(V) complexes Cp0MoCl4(CH3CN) 1 and Cp′MoCl4(CH3CN) 2 in good yields. While 1 and 2 are reduced by LiPH(2,4,6-BuC6H2) to the Mo(III) complexes [Cp0Mo(μ? Cl)2]2 3 and [Cp′Mo(μ? Cl)2]2 4 , the reaction of 1 with KPPh2(dioxane)2 yields the reduction/substitution product [CpMo2(μ? Cl)3(μ? PPh)] 5 in low yield. 1 – 4 were characterized spectroscopically (i.r., mass, 3 and 4 also n.m.r.). An X-ray crystal structure determination was carried out on 3 and 5. 3 crystallizes in the triclinic space group P1 (No. 2) with a = 8.278(4), b = 12.508(7), c = 12.826(7) Å, α = 86.78(5), β = 81.55(2), γ = 75.65(4)°, V = 1 272.4 Å3 and two formula units in the unit cell (data collection at ? 67°C, 4 255 independent observed reflections, R = 2.9%); 5 crystallizes in the triclinic space group P1 (No. 2) with a = 11.536(8), b = 12.307(9), c = 13.157(9) Å, α = 91.41(6), β = 100.42(5), γ = 112.26(6)°, V = 1 688.7 Å3 and two formula units in the unit cell (data collection at ? 60°C, 6 147 independent observed reflections, R = 4.9%). The crystal structure of 3 shows the presence of centrosymmetric dimeric molecules with four bridging chloro ligands. In 5, two Mo atoms are bridged by three chloro ligands and one PPh2 ligand. The Mo? Mo bond length in 3 and 5 (2.600(2), 2.596(2) Å and 2.6388(8) Å) is in agreement with a Mo? Mo bond.  相似文献   

    13.
    The crystalline structure of a new compound Rh(III) of (NH4)2[Rh(NO2)3(NH3)(μ-OH)]2 composition has been determined. The crystallographic characteristics are H16N10O14Rh2: a = 6.3963(2) Å, b = 9.3701(4) Å, c = 13.6646(5) Å, β = 102.266(1)°, V = 800.28(5) Å3, Z = 2, d calc = 2.432 g/cm3. The distance Rh...Rh in the dimer is 3.200 Å. Original Russian Text Copyright ? 2006 by S. P. Khranenko, I. A. Baidina, and S. A. Gromilov __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 47, No. 2, pp. 380–384, March–April, 2006.  相似文献   

    14.
    An X-ray crystal structure analysis of yellow Ag3SO3N · H2O was carried out at room temperature:M=435.69, monoclinic, P21/n,a=11.628 (5) Å,b=8.058 (4) Å,c=12.034 (5) Å, =86.49 (3)°,V=1125.5 Å3,Z=8,d x =5.142 Mgm–3, MoK, =0.71069 Å (graphite monochromator), =10.5 mm–1,R=5.44%,R w =5.85% (877 reflections, 118 parameters). The structure contains Ag planes with Ag-Ag distances shorter than in metallic silver. The nitrogen atoms of the SO3N anion are covalently bonded to 4Ag atoms of these Ag planes, thus assuming the extraordinary coordination number of 5. The five crystallographically independent Ag atoms forming the Ag planes have approximate linear N-Ag-N coordination. In addition, the structure contains two Ag atoms which are ionically coordinated to 4 resp. 5O atoms of SO3N and water. The colour-structure correlation of Ag(I) compounds with colourless anions is discussed.
    Herrn Prof. Dr. mult.V. Gutmann zum 65. Geburtstag gewidmet.  相似文献   

    15.
    The crystal structure of (KPO3)4 · 2H2O was solved by direct methods andFourier-syntheses (triclinic; P ;a=1 114.9 (2),b=821.9 (2),c=815.7 (3) pm; =88,88 (2), =84.51 (2), =82.70 (2)°;Z=2; 5910 unique reflections;R=0.052). The cyclic anions exhibit point symmetry S4 with four terminal oxygens in axial and four in equatorial position. Thermal investigations (DTA, TGA, X-Ray-methods) show that the dehydration occurs in two steps. The anhydrous form of (KPO3)4 is stable above 230 °C and undergoes a second order phase transition which is complete at 515±5 °C.
      相似文献   

    16.
    The monomeric rhenium(I) complex with bidentate telluroether ligand Re(CO)3Br(PhTe(CH2)3TePh) (1) was accessible via reaction of the PhTe(CH2)3TePh with Re(CO)5Br. This chelate complex crystallized in triclinic space group $ {\rm P}\bar 1 $ with a = 9.390(5) Å, b = 10.961(3) Å, c = 11.849(4) Å a = 63.30(3)°, β = 87.49(4)° γ = 69.31(4)°, V = 1009.5(7) Å3 Z = 2, R = 0.033, and Rw = 0.034. Reaction of Re(CO)5Cl with NaTePh yielded the Re(I) specics PhTeRe(CO)5 (2). This complex crystallized in triclinic space group $ {\rm P}\bar 1 $ with a = 7.085(1) Å, b = 9.203(1) Å, c = 11.341(1) Å, α = 107.24(1)°, β = 100.56(1)°, γ = 96.47(1)°, V = 683.2(2) Å3, Z = 2, R = 0.027, Rw = 0.022. Reaction of PhTeRe(CO)5 and (PhSe)2 in THF at 65 °C yielded a product that was confirmed crystallographically to be the known species Re2(μ-SePh)2(CO)8 (3), in which two phenylselenolate ligands bridge the two Re(I). Compound 3 crystallized in monoclinic space group P21/n with a = 7.210(2) Å, b = 18.862(6) Å, c = 9.083(3) Å, β = 107.48(3)° V = 1178.2(7) Å3, Z = 2, R = 0.046, and Rw = 0.051. Methylation of PhTeRe(CO)5 with [Me3O][BF4] afforded Re(I) product [(PhTeMe)Re(CO)5][BF4] (4). This monodentate telluroether species crystallized in monoclinic space group P21/n with a = 8.405(1) Å, b = 13.438(3) Å, c = 15.560(2) Å, β = 92.59(1)° V = 1755.5(5) Å3, Z = 4, R = 0.035, and Rw = 0.035.  相似文献   

    17.
    Iodostannates with Polymeric Anions: (Me3PhN)4 [Sn3I10], [Me2HN–(CH2)2–NMe2H]2 [Sn3I10], and [Me2HN–(CH2)2–NMe2H] [Sn3I8] The polymeric iodostannate anions in (Me3PhN)4 [Sn3I10] ( 1 ) and [Me2HN–(CH2)2–NMe2H]2 [Sn3I10] ( 2 ) consist of Sn3I12‐trioctahedra, which share four common iodine atoms with adjacent units to form infinite layers in 1 and polymeric chains in 2 . In the anion of [Me2HN–(CH2)2–NMe2H] [Sn3I8] ( 3 ) distorted SnI6 octahedra sharing common edges and vertices form a two‐dimensional network. (Me3PhN)4 [Sn3I10] ( 1 ): Space group C2/c (No. 15), a = 2406.9(2), b = 968.26(7), c = 2651.7(2) pm, β = 111.775(9), V = 5738.9(8) · 106 pm3; [Me2HN–(CH2)2–NMe2H]2 [Sn3I10] ( 2 ): Space group P21/n (No. 14), a = 1187.2(1), b = 1554.4(1), c = 1188.9(1) pm, β = 116.620(8), V = 1961.4(3) · 106 pm3; [Me2HN–(CH2)2–NMe2H] [Sn3I8] ( 3 ): Space group P21/c (No. 14), a = 1098.9(2), b = 803.93(7), c = 1571.5(2) pm, β = 102.96(1), V = 1352.9(2) · 106 pm3.  相似文献   

    18.
    An X-ray crystal structure analysis of colourless Ag3SO3N · 3NH3 · 2H2O was carried out at room temperature:M=504.79, orthorhombic, P212121,a=6.275 (1) Å,b=11.826 (2) Å,c=14.299 (12) Å,V=1061.10 Å3,Z=4,d x=3.160 Mgm–3,F(000)=940, Mo K, =0.71069 Å (graphite monochromator), =5.60 mm–1,R=4.71%,R w=4.96% (982 reflections, 120 parameters). The structure consists of Ag ribbons; each Ag atom is linearly co-ordinated to two N atoms with distances corresponding to covalent Ag-N bonds; no Ag-O coordination is observed; the N atom of the SO3N group is surrounded by three Ag atoms; compared to amidosulfuric acid, the SO3N group shows significant deformation.
      相似文献   

    19.
    Comparative results on the reduction of 4,6,7,8-tetrahydro-7,7-dimethyl-2H-1-benzopyran-2,5(3H)-diones 1 are reported. Hydride reduction (LiAlH4 in Et2O or NaBH4 in i-PrOH) affords 2,3,4,6,7,8-hexahydro-5H-1-benzopyran-5-ones 5 in 30-60% isolated yield. Photochemical reduction of 1b and 1d (direct irradiation at λ = 300 or 254 nm in i-PrOH, or sensitized irradiation in acetone/i-PrOH or benzene/i-PrOH) gives 3-(6-oxo-1-cyclohexenyl)alkanoic acids 6 in 50–80%, while 1c affords the isomeric 3-(4,4-dimethyl-6-oxo-1-cyclohexenyl)-4-methyl-4-pentenoic acid ( 9 ) in 73% isolated yield. Electrochemical reduction (Hg, CH3CN, Bu4N+ClO, ?2.6 V vs. Ag/Ag+) requires more than 4 Farad/mol for the consumption of 1 without any major product being detected.  相似文献   

    20.
    Treatment of the bulky iminophosphine ligand [Ph2PCH2C(Ph)N(2,6-Me2C6H3)] (L) with [M(CH3CN)2(ligand)]+n, where for M = Pd(II): ligand = η3-allyl, n = 1, and for M = Rh(I), ligand: 2(C2H4), 2(CO) or cod, n = 0, yields the mono-cationic iminophosphine complexes [Pd(η3-C3H5)(L)][BF4] (1), [Rh(cod)(L)][BF4] (2), [Rh(CO)(CH3CN)(L)][BF4] (3), and cis-[Rh(L)2][BF4] (4). All the new complexes have been characterised by NMR spectroscopy and X-ray diffraction. Complex 1 shows moderate activity in the copolymerisation of CO and ethene but is inactive towards Heck coupling of 4-bromoacetophenone and n-butyl acrylate.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号