首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
In this paper, we discuss the application of spectral-based methods to simulation of particle-laden turbulent flows. The primary focus of the article is on the past and ongoing works by the authors. The particles are tracked in Lagrangian framework, while direct numerical simulation (DNS) or large-eddy simulation (LES) is used to describe the carrier-phase flow field. Two different spectral methods are considered, namely Fourier pseudo-spectral method and Chebyshev multidomain spectral method. The pseudo-spectral method is used for the simulation of homogeneous turbulence. DNS of both incompressible and compressible flows with one- and two-way couplings are reported. For LES of particle-laden flows, two new models, developed by the authors, account for the effect of sub-grid fluctuations on the dispersed phase. The Chebyshev multidomain method is employed for the works on inhomogeneous flows. A number of canonical flows are discussed, including flow past a square cylinder, channel flow and flow over backward-facing step. Ongoing research on particle-laden LES of inhomogeneous flows is briefly reported.  相似文献   

2.
The objective of this paper is twofold: (1) to present a statistical model of particle transport and heat transfer in turbulent flows and (2) to examine the performance of this model in various turbulent flows going from a simple flow to a more complicated one. This model is based on a kinetic equation for the probability density function of the particle velocity and temperature distributions in anisotropic turbulent flow. The model predictions compare reasonable well with numerical simulations and properly reproduce the crucial trends of computations performed in various turbulent flows.  相似文献   

3.
The problem of the spatio-temporal evolution of perturbations introduced into the inlet cross-section of a circular pipe is solved numerically. The case of time-periodic inflow perturbations is considered for Re = 4000. It is shown that for relatively small inflow perturbations periodic flow regimes and for greater perturbations chaotic regimes are established.Periodic regimes the flow is a superposition of steady flow and a damped wave propagating downstream. The velocity profile of the steady component differs essentially from both the parabolic Poiseuille and developed turbulent flows and is strongly inhomogeneous in the angular direction. The angular distortion of the velocity profile is caused by longitudinal vortices developing as a result of the nonlinear interaction of inflow perturbations.Chaotic flow regimes develop when the amplitude of the inflow perturbations exceeds a certain threshold level. Stochastic high-frequency pulsations appear after the formation of longitudinal vortices in the regions of maximum angular gradient of the axial velocity. In the downstream part of the flow, remote from the transition region, the developed turbulent regime is formed. The distributions of all the statistical moments along the pipe level off and approach the values measured experimentally and calculated numerically for developed turbulent flows.  相似文献   

4.
A large‐eddy simulation methodology for high performance parallel computation of statistically fully inhomogeneous turbulent flows on structured grids is presented. Strategies and algorithms to improve the memory efficiency as well as the parallel performance of the subgrid‐scale model, the factored scheme, and the Poisson solver on shared‐memory parallel platforms are proposed and evaluated. A novel combination of one‐dimensional red–black/line Gauss–Seidel and two‐dimensional red–black/line Gauss–Seidel methods is shown to provide high efficiency and performance for multigrid relaxation of the Poisson equation. Parallel speedups are measured on various shared‐distributed memory systems. Validations of the code are performed in large‐eddy simulations of turbulent flows through a straight channel and a square duct. Results obtained from the present solver employing a Lagrangian dynamic subgrid‐scale model show good agreements with other available data. The capability of the code for more complex flows is assessed by performing a large‐eddy simulation of the tip‐leakage flow in a linear cascade. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
The rotational dispersion coefficient of the fiber in the turbulent shear flow of fiber suspension was studied theoretically. The function of correlation moment between the different fluctuating velocity gradients of the flow was built firstly. Then the expres- sion, dependent on the characteristic length, time, velocity and a dimensionless parameter related to the effect of wall, of rotational dispersion coefficient is derived. The derived expression of rotational dispersion coefficient can be employed to the inhomogeneous and non-isotropic turbulent flows. Furthermore it can be expanded to three-dimensional turbulent flows and serves the theoretical basis for solving the turbulent flow of fiber suspension.  相似文献   

6.
The rotational dispersion coefficient of the fiber in the turbulent shear flow of fiber suspension was studied theoretically. The function of correlation moment between the different fluctuating velocity gradients of the flow was built firstly. Then the expression, dependent on the characteristic length, time, velocity and a dimensionless parameter related to the effect of wall, of rotational dispersion coefficient is derived. The derived expression of rotational dispersion coefficient can be employed to the inhomogeneous and non-isotropic turbulent flows. Furthermore it can be expanded to three-dimensional turbulent flows and serves the theoretical basis for solving the turbulent flow of fiber suspension.  相似文献   

7.
A Lagrangian continuous random walk (CRW) model is developed to predict turbulent particle dispersion in arbitrary wall-bounded flows with prevailing anisotropic, inhomogeneous turbulence. The particle tracking model uses 3D mean flow data obtained from the Fluent CFD code, as well as Eulerian statistics of instantaneous quantities computed from DNS databases. The turbulent fluid velocities at the current time step are related to those of the previous time step through a Markov chain based on the normalized Langevin equation which takes into account turbulence inhomogeneities. The model includes a drift velocity correction that considerably reduces unphysical features common in random walk models. It is shown that the model satisfies the well-mixed criterion such that tracer particles retain approximately uniform concentrations when introduced uniformly in the domain, while their deposition velocity is vanishingly small, as it should be. To handle arbitrary geometries, it is assumed that the velocity rms values in the boundary layer can locally be approximated by the DNS data of fully developed channel flows. Benchmarks of the model are performed against particle deposition data in turbulent pipe flows, 90° bends, as well as more complex 3D flows inside a mouth-throat geometry. Good agreement with the data is obtained across the range of particle inertia.  相似文献   

8.
9.
This paper presents a detailed study of incompressible turbulent flow based on a newly developed statistical partial average scheme. As the ensemble average is taken on two groups of turbulent fluctuations separately, the partial average scheme is able to capture the first-order statistical moment of the fluctuation field, providing valuable information in addition to what have been known in the past from the conventional Reynolds average. The first-order statistical moment serves as the foundation in formulating theories of orthotropic turbulence and a momentum transfer chain in the modeling of second-order correlation terms, and eventually leads to a complete set of equations of incompressible turbulent flow. Without any empirical coefficients, the same set of the equations is used to simulate statistical mean behaviors and coherent structures of various benchmark turbulent flows. The simulated results are in good agreement with experimental data.  相似文献   

10.
The present study is concerned with adopting of a Talbot effect-based technique for analyzing flows with random phase inhomogeneities. It is shown that this method is a powerful tool for diagnostics of turbulent flows. The potential of the technique is illustrated by measuring mean and fluctuating values of admixture concentration of two-dimensional turbulent helium jet issuing into the ambient air. Averaged air and helium concentrations throughout the flow field are determined using local light refraction measurements with a high spatial resolution from a long-exposed Talbot image of the jet. The analysis of light intensity distributions in light spots of a Talbot-image shows that the jet turbulence is inhomogeneous and anisotropic. Quantitative information on rms fluctuations of concentration gradients throughout the flow field is obtained from local photometric measurements at the Talbot light spots.  相似文献   

11.
Structural similarities between samples of individual, apparently random structures in various wall-bounded turbulent flows are examined using a template-matching technique. Two-dimensional structural patterns obtained by particle image velocimetry in a turbulent boundary layer are sampled along streamwise lines to extract one-dimensional spatial series that are used as templates. These templates are correlated with time series data obtained in turbulent pipe flow, turbulent channel flow, and atmospheric boundary layer flow in order to determine the frequency and coherency with which similar structures occur. The results indicate that a small ensemble of templates from one flow can be concatenated to represent a large fraction of the entire velocity-time history of each of the other flows by using episodes during which the various templates correlate well. Thus, within the pipe flow, channel flow, and atmospheric boundary layer, one frequently finds detailed time series segments that coincide closely, i.e., in fine detail, with a handful of templates found in a laboratory boundary layer. This type of similarity, which includes seemingly random, fine details at large and small scales, is much stronger than similarity based on statistical comparisons. The individual templates that work best, i.e., those that most frequently yield episodes of high correlation, are segments of hairpin-vortex packets. The high frequency with which these particular structures occur suggests that they are common features of all wall-bounded turbulent flows, including turbulent flows at very high Reynolds number such as the atmospheric boundary layer.  相似文献   

12.
 Accurate postprocessing methods are required in order to analyze the detailed flow structures from the scattered data of particle-tracking velocimetry (PTV). In particular, vorticity distributions and stream functions are not reasonably obtained by conventional methods. This paper proposes a new postprocessing algorithm based on ellipsoidal differential equations; this method utilizes data as discrete boundary conditions. The results obtained by the proposed algorithm fully satisfy the equation of continuity and simultaneously correspond well with the raw data. The performance of the algorithm is examined by applying it to two-dimensional vortex flows and isotropic turbulent flows. The results reveal that the present algorithm has the highest accuracy among several conventional methods for detecting vorticity and streamlines. Received: 29 January 2001 / Accepted: 7 August 2001  相似文献   

13.
A modified model of turbulence is proposed to describe the processes of vertical transport in inhomogeneous turbulent flows. This model includes algebraic relations for the Reynolds stresses and turbulent-exchange coefficients. Using this model, the growth of the depth of a mixed layer under the action of the wind load in neutral and stable stratified near-wall flows has been predicted. The calculation results for a stable stratified flow that were obtained using the modified and standard two-parametric models of turbulence are compared with experimental data. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 6, pp. 57–64, November–December, 1998.  相似文献   

14.
15.
This article focuses on the development of a discontinuous Galerkin (DG) method for simulations of multicomponent and chemically reacting flows. Compared to aerodynamic flow applications, in which DG methods have been successfully employed, DG simulations of chem-ically reacting flows introduce challenges that arise from flow unsteadiness, combustion, heat release, compressibility effects, shocks, and variations in thermodynamic proper-ties. To address these challenges, algorithms are developed, including an entropy-bounded DG method, an entropy-residual shock indicator, and a new formulation of artificial viscosity. The performance and capabilities of the resulting DG method are demonstrated in several relevant applications, including shock/bubble interaction, turbulent combustion, and detonation. It is concluded that the developed DG method shows promising performance in application to multicompo-nent reacting flows. The paper concludes with a discussion of further research needs to enable the application of DG methods to more complex reacting flows.  相似文献   

16.
Time-resolved simulations of simple shear flows, such as boundary layers and channel flows, are often used as precursor simulations that provide the inflow-boundary conditions for simulations of turbulent flows in and around more complex geometries. For both the precursor and main simulations, the accuracy of the calculated mean flow relies on the simulations being run for long enough to contain the full spectrum of turbulent processes, resulting in a physically valid statistical representation. The time scale needed to achieve convergence of statistics from fundamental studies of simple shear flows is based on data that is averaged in spatial directions in which the flow geometry is invariant—i.e. directions in which homogeneity is expected to be the limiting case. This paper reports and discusses features that represent significant departures from spatial homogeneity of the flow in such a direction, that persist on this time scale, thereby limiting the spatial uniformity of a simulated turbulent inflow. The persistence and size of the features is quantified. A range of simulations for different combinations of domain dimensions and flow parameters has been performed with two independent codes (DNS and LES) to explore how the persistence and size are controlled. While no definitive physical mechanism has been identified, it is suggested that the features may be related to experimental observations of persistent structures in wall-bounded flows.  相似文献   

17.
The point reference global correlation (PRGC) technique which combines single and global measurements as proposed by Chatellier and Fitzpatrick (Exp Fluids 38(5):563–757, 2005) is of significant interest for the analysis of the turbulent statistics for noise source modeling in jet flows as it allows the 2D spatio-temporal correlation functions to be obtained over a region of the flow. This enables the statistical characteristics including inhomogeneous and anisotropic features to be determined. The sensitivity of the technique is examined in some detail for the specific case of laser doppler velocimetry (LDV) and particle image velocimetry (PIV). Simulated data are used to enable a parametric study of the accuracy of the PRGC technique to be determined as a function of the various measurement parameters. The sample frequencies and the number of samples of both the LDV and PIV signals are shown to be critical to errors associated with the estimated spatio-temporal correlations and that low data rates can lead to significant errors in the estimates. Measurements performed in single stream and co-axial jet flows at Mach 0.24 using PIV and LDV systems are reported and the 2D space–time correlation functions for these flows are determined using the PRGC technique. The results are discussed in the context of noise source modeling for jet flows.  相似文献   

18.
Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) of spatially inhomogeneous flows strongly depend on turbulent inflow boundary conditions. Realistic coherent structures need to be prescribed to avoid the immediate damping of random velocity fluctuations. A new turbulent inflow data generation method based on an auxiliary simulation of forced turbulence in a box is presented. The new methodology combines the flexibility of the synthetic turbulence generation with the accuracy of precursor simulation methods. In contrast to most auxiliary simulations, the new approach provides full control over the turbulence properties and computational costs remain reasonable. The lack of physical information and artificiality attested with pseudo-turbulence methods is overcome since the inflow data stems from a solution of the Navier-Stokes equations. The generated velocity fluctuations are by construction divergence-free and exhibit the non-Gaussian characteristics of turbulence. The generated inflow data is applied to the simulation of multiphase primary breakup.  相似文献   

19.
Prediction of the characteristics of turbulent flows with strong streamline curvature, such as flows in turbomachines, curved channel flows, flows around airfoils and buildings, is of great importance in engineering applications and poses a very practical challenge for turbulence modeling. In this paper, we analyze qualitatively the curvature effects on the structure of turbulence and conduct numerical simulations of a turbulent Uduct flow with a number of turbulence models in order to assess their overall performance. The models evaluated in this work are some typical linear eddy viscosity turbulence models, nonlinear eddy viscosity turbulence models (NLEVM) (quadratic and cubic), a quadratic explicit algebraic stress model (EASM) and a Reynolds stress model (RSM) developed based on the second-moment closure. Our numerical results show that a cubic NLEVM that performs considerably well in other benchmark turbulent flows, such as the Craft, Launder and Suga model and the Huang and Ma model, is able to capture the major features of the highly curved turbulent U-duct flow, including the damping of turbulence near the convex wall, the enhancement of turbulence near the concave wall, and the subsequent turbulent flow separation. The predictions of the cubic models are quite close to that of the RSM, in relatively good agreement with the experimental data, which suggests that these models may be employed to simulate the turbulent curved flows in engineering applications.  相似文献   

20.
A technique for determining the criterion of transition from the laminar to the turbulent flow regime on a stabilized plasmatron channel section is proposed. The technique uses experimental data and the methods of numerical simulation of plasma flows. A criterial generalization of the experimental data which for the first time makes it possible to establish the boundary of transition from the laminar to the turbulent flow regime on a stabilized plasmatron channel section is proposed. The experimental results are in good agreement with the theoretical dependences derived in the study. A curve (analog of the neutral curve) separating the domains of existence of laminar and turbulent plasma flows in a cylindrical channel is constructed in the space of the plasmatron working parameters.Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, 2004, pp. 49–61. Original Russian Text Copyright © 2004 by Sinkevich and Chikunov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号