首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In continuation of our recent study on the steady state photophysics of a biologically active beta-carboline derivative, 3-acetyl-4-oxo-6,7-dihydro-12H indolo-[2,3-a] quinolizine (AODIQ), in the present article we have investigated the effect of nanocavity confinement on the excited state dynamics and rotational relaxation of the probe using picosecond time resolved fluorescence and fluorescence anisotropy techniques. The polarity dependent intramolecular charge transfer process is responsible for the remarkable sensitivity of this biological fluorophore in micellar environments. The fluorescence anisotropy decay of AODIQ incorporated inside the micelle is biexponential. The rotational motion of the probe was interpreted on the basis of a two step model consisting of a fast restricted rotation of the probe and a slow lateral diffusion of the probe in the micelle; both coupled to the overall rotation of the micelle. Experimental results reveal that micellar environment causes significant retardation of both the wobbling as well as the translational motion of the probe.  相似文献   

2.
The orientational and translational motion of individual dye molecules embedded in a polymer matrix is studied in the temperature regime above the glass transition. The rotational diffusion close to the glass transition is heterogeneous on the single molecule level and few sudden changes in the reorientational speed of single molecules are found. The exchange between these reorientational speeds is found to be one order of magnitude slower than the reorientational time constant of the molecules. Translational motion can be clearly identified at about 1.2 Tg. However, the translational diffusion shows no signs of heterogeneity on the timescale of our experiments, from which we conclude, that the timescale of the exchange process between microenvironments has become too fast or that no heterogeneity exists at the temperatures above 1.2 Tg.  相似文献   

3.
《Chemical physics letters》1987,140(4):394-400
Analysis of time-resolved fluorescence anisotropy measurements on DPH and TMA-DPH in POPC vesicles with and without cholesterol in terms of the rotational diffusion model shows two distinct χr2 minima which are statistically equivalent. This is explained by the fact that the anisotropy decay function is given by a sum of three correlation functions which cannot be uniquely separated into individual contributions. The two solutions yield contradictory results for the effect of cholesterol on the probe dynamics. It is shown that the Maier-Saupe potential and the “wobble-in-cone” model do not give an adequate picture of the orientational order and the reorientational dynamics.  相似文献   

4.
《Chemphyschem》2003,4(6):588-594
The reorientational dynamics of the ionic liquid 1butyl‐3‐methylimidazolium hexafluorophosphate ([BMIM]PF6) were studied over a wide range of temperatures by measurement of 13C spin–lattice relaxation rates and NOE factors. The reorientational dynamics were evaluated by performing fits to the experimental relaxation data. Thus, the overall reorientational motion was described by a Cole–Davidson spectral density with a Vogel–Fulcher–Tammann temperature dependence of the correlation times. The reorientational motion of the butyl chain was modelled by a combination of the latter model for the overall motion with a Bloembergen–Purcell–Pound spectral density and an Arrhenius temperature dependence for the internal motion. Except for C2 in the aromatic ring, an additional reduction of the spectral density by the Lipari–Szabo model had to be employed. This reduction is a consequence of fast molecular motions before the rotational diffusion process becomes effective. The C2 atom did not exhibit this reduction, because the librational motion of the corresponding C2? H vector is severely hindered due to hydrogen bonding with the hexafluorophosphate anion. The observed dynamic features of the [BMIM]+ cation confirm quantum‐chemical structures obtained in a former study.  相似文献   

5.
In this study, the urea dynamics inside AOT reverse micelle (RM) has been monitored without intervention of water using time-resolved fluorescence techniques from the picosecond to nanosecond time regime. It has been observed that urea dynamics inside the reverse micelle is severely retarded compared to water RM due to the formation of highly networked urea cluster inside the RM. Time-resolved fluorescence anisotropy study also confirms the existence of a confined environment around the dye at higher concentrations of urea inside the reverse micelle. The dynamics of urea-water mixtures inside AOT reverse micelle has also been monitored with increasing urea concentration to get insight about the effect of urea on the overall solvation dynamics feature. It has been observed that with the increase in urea concentration, the overall dynamics becomes slower, and it infers the presence of few water or urea molecules, those strongly associated with surrounding urea and (or) water by hydrogen bonds.  相似文献   

6.
The dynamic behaviour of the probe molecules DPH and TMA-DPH embedded in small unilamellar vesicles and planar multibilayers of POPC has been studied by time-resolved fluorescence depolarization techniques. The molecular dynamics of the probe molecules was analysed in terms of the rotational diffusion model. It is found that analysis of the time-dependent fluorescence anisotropy from the vesicle system yields two distinct, though statistically equivalent solutions. On the other hand the measurements on planar multibilayers can be interpreted unequivocally. It is shown that the order parameters of the probe molecules are higher in the multibilayers than in the vesicles. A reconstruction of the orientational distribution function reveals that the TMA-DPH molecules have a more pronounced tendency to lie with their long axes parallel to the bilayer surface in the curved vesicles than in the planar multibilayers. An intriguing finding is that the reorientational motion of the probes is considerably slower in the multibilayer samples than in the vesicles. These differences are attributed to the curvature and higher hydration of the bilayers in the vesicle systems.  相似文献   

7.
The present study elucidates the extended nature of the weak interaction between methanol and chloroform in its mixture using steady-state, ultrafast and single molecule spectroscopic methods. UV–vis absorption spectroscopy using a solvatochromic dye indicates a synergistic solvation in the methanol–chloroform binary solvent mixture, which causes the solvatochromic dye to sense increased polarity compared to the bulk counterparts. Such synergism was not observed in the emission study and is explained by the weak nature of the interaction between methanol and chloroform. Fluorescence anisotropy and single molecule fluorescence spectroscopy are employed to understand the nature of such weak interaction on femtosecond to microsecond time scale. Retardation of both the rotational and translational diffusion of the reporter molecule indicates that the observed weak interaction is extended over large dimension in the condensed phase.  相似文献   

8.
The sulfoindocyanine Cy3 is one of the most commonly used fluorescent dyes in the investigation of the structure and dynamics of nucleic acids by means of fluorescence methods. In this work, we report the fluorescence and photophysical properties of Cy3 attached covalently to single-stranded and duplex DNA. Steady-state and time-resolved fluorescence techniques were used to determine fluorescence quantum yields, emission lifetimes, and fluorescence anisotropy decays. The existence of a transient photoisomer was investigated by means of transient absorption techniques. The fluorescence quantum yield of Cy3 is highest when attached to the 5' terminus of single-stranded DNA (Cy3-5' ssDNA), and decreases by a factor of 2.4 when the complementary strand is annealed to form duplex DNA (Cy3-5' dsDNA). Substantial differences were also observed between the 5'-modified strands and strands modified through an internal amino-modified deoxy uridine. The fluorescence decay of Cy3 became multiexponential upon conjugation to DNA. The longest lifetime was observed for Cy3-5' ssDNA, where about 50% of the decay is dominated by a 2.0-ns lifetime. This value is more than 10 times larger than the fluorescence lifetime of the free dye in solution. These observations are interpreted in terms of a model where the molecule undergoes a trans-cis isomerization reaction from the first excited state. We observed that the activation energy for photoisomerization depends strongly on the microenvironment in which the dye is located. The unusually high activation energy measured for Cy3-5' ssDNA is an indication of dye-ssDNA interactions. In fact, the time-resolved fluorescence anisotropy decay of this sample is dominated by a 2.5-ns rotational correlation time, which evidences the lack of rotational freedom of the dye around the linker that separates it from the terminal 5' phosphate. The remarkable variations in the photophysical properties of Cy3-DNA constructs demonstrate that caution should be used when Cy3 is used in studies employing DNA conjugates.  相似文献   

9.
A previous study of C70 in deuterated chlorobenzene generated evidence suggesting C70 was experiencing unique reorientational behavior at given temperatures. The present study explores the possibility that this behavior is present across other solvents. The 13C spin-lattice relaxation rates for four carbon resonances in C70 were analyzed in benzene-d6, chlorobenzene-d5, and o-dichlorobenzene-d4, and as a function of temperature, to probe the reorientational dynamics of this fullerene. Anisotropic behavior was observed at the lowest (283 K) and highest temperatures (323 K), isotropic diffusion was seen between 293 and 303 K, and quasi-isotropic at 313 K. When anisotropic motion was present, diffusion about the figure axis was seen to be higher than diffusion of the figure axis. Experimentally obtained diffusion coefficients generated reorientational correlation times that were in excellent agreement with experimental values. Theoretical predictions generated by a modified Gierer-Wirtz model provided acceptable predictions of the diffusion constants; with DX usually being more closely reproduced and DZ values generally being underestimated. Overall, the results indicate that the factors affecting rotational behavior are complex and that multiple solvent factors are necessary to characterize the overall motion of C70 in these solvents. Although a solvent's viscosity is normally sufficient to characterize the tumbling motion, the spinning motion is less sensitive to solvent viscosity but more responsive to solvent structure. The balance and collective influence of these factors ultimately determines the overall rotational behavior.  相似文献   

10.
The stability of an inclusion complex of quinuclidine with alpha-cyclodextrin in solution was investigated by NMR measurements of the translational diffusion coefficient. A 1:1 stoichiometry model yielded an association constant of 35 +/- 3 M(-1). The guest molecules exchange rapidly between the host cavity and the bulk solution. The reorientational dynamics of the guest and host molecules was studied using carbon-13 NMR relaxation at two magnetic fields. The relaxation of the host nuclei showed very little dependence on the guest-host concentration ratio, while the 13C spins in quinuclidine were sensitive to the solution composition. Using mole-fraction data, it was possible to extract the relaxation parameters for the bound and free form of quinuclidine. Relaxation rates of the guest molecule, free in solution, were best described by an axially symmetric model, while the data of the complex species were analyzed using the Lipari-Szabo method. Applying the axially symmetric model to the complexed quinuclidine indicated that the anisotropy of its reorientation in the bound form was increased.  相似文献   

11.
We show that noncovalently bound dye molecules can be used as labels in single-molecule fluorescence experiments for the determination of aggregate formation in standard surfactant systems. Aqueous solutions of sulfosuccinic acid bis(2-ethylhexyl) ester sodium salt, hexadecyltrimethylammonium chloride, and pentaethylene glycol monododecyl ether have been studied by fluorescence correlation spectroscopy using commercially available dyes. The translational diffusion coefficient and the critical micelle concentrations have been determined and compare well to values reported in the literature. The respective charges of the surfactant and of the dye molecule are crucial for the effectiveness of the presented method.  相似文献   

12.
Time-resolved fluorescence anisotropy (TRFA) is widely used to study dynamic motions of biomolecules in a variety of environments. However, depolarization due to rapid side chain motions often complicates the interpretation of anisotropy decay data and interferes with the accurate observation of segmental motions. Here, we demonstrate a new method for two-point ionic labeling of polymers and biomolecules that have appropriately spaced amino groups using the fluorescent probe 8-hydroxyl-1,3,6-trisulfonated pyrene (pyranine). TRFA analysis shows that such labeling provides a more rigid attachment of the fluorophore to the macromolecule than the covalent or single-point ionic labeling of amino groups, leading to time-resolved anisotropy decays that better reflect the backbone motion of the labeled polymer segment. Optimal coupling of pyranine to biomolecule dynamics is shown to be obtained for appropriately spaced Arg groups, and in such cases the ionic binding is stable up to 150 mM ionic strength. TRFA was used to monitor the behavior of pyranine-labeled poly(allylamine) (PAM) and poly-d-lysine (PL) in sodium silicate derived sol-gel materials and revealed significant restriction of backbone motion upon entrapment for both polymers, an observation that was not readily apparent in a previous study with entrapped fluorescein-labeled PAM and PL. The implications of these findings for fluorescence studies of polymer and biomolecule dynamics are discussed.  相似文献   

13.
《Chemical physics letters》1987,140(4):389-393
Surfactant motion in spherical micelles of the system cetyltrimethylammonium bromide/D2O has been investigated by 1H and 14N longitudinal relaxation at different frequencies. Such measurements allow extraction of the correlation time characterizing the overall reorientation of the surfactant molecule, which includes micelle tumbling and lateral diffusion around the micelle. The proton data, which reflect the alkyl chain mobility, require the definition of a local director, distinct from the normal to the aggregate surface, thus making possible the occurrence of an additional slow motion. Conversely 14N data can be analyzed accord- ing to the classical two-step model; this yields a correlation time associated with the slow motion of as ≈5 ns leading to a value of 4× 10−7 cm2 s−1 for the lateral diffusion coefficient.  相似文献   

14.
Our aim is to doubly confine a molecule of coumarin C522 in a host–guest supramolecular complex with β‐cyclodextrin in a reverse sodium dioctyl sulfosuccinate (AOT) micelle using nonpolar n‐heptane and polar water solvents. Varying the volumes of coumarin C522 and β‐cyclodextrin dissolved in water allows us to control the water‐pool diameters of the reverse micelle in n‐heptane with values of w=3, 5, 10, 20, and 40, where w is the ratio of water concentration to AOT concentration in n‐heptane. To study the fluorescence dynamics of coumarin C522, the spectral steady‐state and time‐resolved dependences are compared for the two systems coumarin C522(water)/AOT(n‐heptane), denoted C522/micelle, and coumarin C522/β‐cyclodextrin(water)/AOT(n‐heptane), referred to as C522/CD/micelle. The formation of the supramolecular host–guest complex CD–C522 is indicated by a blue shift, but in the micelle, the shift is red. However, the values of the fluorescence maxima at 520 and 515 nm are still way below the value of 535 nm representing bulk water. The interpretation of the red shift is based on two complementary processes. The first one is the confinement of CD and C522 by the micelle water pool and the second is the perturbation of the micelle by CD and C522, resulting in an increase of the water polarity. The fluorescence spectra of the C522/micelle and C522/CD/micelle systems have maxima and shoulders. The shoulder intensities at 440 nm, representing the C522 at n‐heptane/AOT interface, decrease as the w values decrease. This intensity shift suggests that the small micelle provides a stronger confinement, and the presence of CD shifts the equilibrium from n‐heptane towards the water pool even more. The fluorescence emission maxima of the C522/micelle and C522/CD/micelle systems for all w values clearly differentiate two trends for w=3–5, and w=10–40, suggesting different interaction in the small and large micelles. Moreover, these fluorescence maxima result in 7 and 13 nm differences for w=3 and w=5, respectively, and provide the spectral evidence to differentiate the C522 confinement in the C522/micelle and C522/CD/micelle systems as an effect of the CD molecule, which might be interpreted as a double confinement of C522 in CD within the micelle. The ultrafast decay in the case of w=3 ranges from 9.5 to 16 ps, with an average of 12.6 ps, in the case of the C522/micelle system. For C522/CD/micelle, the ultrafast decay at w=3 ranges from 9 to 14.5 ps, with an average of 11.8 ps. Increasing w values (from 10 to 40) result in a decrease of the ultrafast decay values in both cases to an average value of about 6.5 ps. The ultrafast decays of 12.6 and 11.8 ps for C522/micelle and C522/CD/micelle, respectively, are in the agreement with the observed red shift, supporting a double confinement in the C522/CD/micelle(w=3) system. The dynamics in the small and large micelles clearly show two different trends. Two slopes in the data are observed for w values of 3–5 and 10–40 in the steady‐state and time‐resolved data. The average ultrafast lifetimes are determined to be 12.6 and 6.5 ps for the small (w=3) and the large (w=40) micelles, respectively. To interpret the experimental solvation dynamics, a simplified model is proposed, and although the model involves a number of parameters, it satisfactory fits the dynamics and provides the gradient of permittivity in the ideal micelle for free water located in the centre (60–80) and for bound water (25–60). An attempt to map the fluorescence dynamics of the doubly confined C522/CD/micelle system is presented for the first time.  相似文献   

15.
Time-resolved fluorescence spectra and fluorescence anisotropy decay of 2-aminoquinoline (2AQ) have been measured in eight room-temperature ionic liquids, including five imidazolium-based aromatic ionic liquids and three nonaromatic ionic liquids. The same experiments have also been carried out in several ordinary molecular liquids for comparison. The observed time-resolved fluorescence spectra indicate the formation of pi-pi aromatic complexes of 2AQ in some of the aromatic ionic liquids but not in the nonaromatic ionic liquids. The fluorescence anisotropy decay data show unusually slow rotational diffusion of 2AQ in the aromatic ionic liquids, suggesting the formation of solute-solvent complexes. The probe 2AQ molecule is likely to be incorporated in the possible local structure of ionic liquids, and hence the anisotropy decays only through the rotation of the whole local structure, making the apparent rotational diffusion of 2AQ slow. The rotational diffusion time decreases rapidly by adding a small amount of acetonitrile to the solution. This observation is interpreted in terms of the local structure formation in the aromatic ionic liquids and its destruction by acetonitrile. No unusual behavior upon addition of acetonitrile has been found for the nonaromatic ionic liquids. It is argued that the aromaticity of the imidazolium cation plays a key role in the local structure formation in imidazolium-based ionic liquids.  相似文献   

16.
We investigate the effects of controlled poly(ethylene glycol) (PEG) doping on the behavior of pyrene, rhodamine 6G (R6G), and acrylodan-labeled bovine serum albumin (BSA-Ac) sequestered within tetramethylorthosilicate (TMOS)-derived sol-gel-processed materials. To probe the dipolarity of the local environment within the composite we performed static fluorescence measurements on pyrene as the composites aged. We found that small levels of PEG loading effected significant enhancements in the local dipolarity surrounding the average pyrene molecule. Time-resolved fluorescence anisotropy measurements were used to follow the rotational reorientation dynamics of R6G as the composites aged. As the PEG loading increased, the R6G reorientational mobility increased. Nitrogen adsorption techniques were used to quantify the effects of PEG doping level on the surface area and final xerogel pore features. A large reduction in surface area was observed with PEG doping, but no detectable change in pore size was noted. The effects of PEG doping on a biomolecule were probed by following the time-resolved fluorescence anisotropy decay of BSA-Ac. These results showed that PEG doping resulted in increased biomolecule dynamics relative to that found for a neat, undoped TMOS-derived composites. Together these results show that PEG doping can be used to tune the sol-gel-processed composite dipolarity, alter the mobility of dopants sequestered within the composite, control analyte acessibility to the sensing chemistry, and modulate the internal dynamics within a biodopant.  相似文献   

17.
Steady-state and time-resolved fluorescence behaviors of two dipolar solutes, coumarin 153 and 4-aminophthalimide, have been studied in an alcohol-functionalized room-temperature ionic liquid, 1-(hydroxyethyl)-3-methylimidazolium bis(trifluoromethanesulfonyl)imide. The steady-state fluorescence parameters have been exploited for the estimation of the polarity of this ionic liquid and to obtain information on the hydrogen bonding interaction between the ionic liquid and the probe molecules. The time-resolved measurements have been focused on the dynamics of solvation by studying the dynamic Stokes shift in the ps-ns time scale and solute rotation by measuring the time dependence of the fluorescence anisotropy. The time-resolved anisotropy studies reveal a significant slow down of the rotational motion of one of the probe molecules. The time-dependent fluorescence Stokes shift measurements suggest that the time-resolvable part of the dynamics is biphasic in nature, highly dependent on the probe molecule and the ultrafast component is comparatively less than that in other ionic liquids. The influence of the hydrogen bonding interaction between the probe molecules and the ionic liquids on the solute rotation and the various components of the solvation dynamics is carefully analyzed in an attempt to obtain further insight into the mechanism of solvation in these novel media.  相似文献   

18.
《Chemical physics》2001,263(2-3):327-331
A non-Markovian, non-linearly coupled quantum stochastic dynamics model was used to investigate the reorientational correlation function of the internal motion of a methyl group attached to a large molecule. The values for the parameters used were determined by comparing angular momentum correlation functions calculated from the stochastic model to results of a molecular dynamics simulation.The results show that the correlation function has a rapid short time decay due to inertial effects, followed by a slower, exponential tail. Thus if there is significant inertial motion it is necessary to have at least two order parameters as well as two correlation times, one each for the overall and the internal motion, in order to accurately describe the system.The model can also explain data of Lee and McClung that cannot be explained with a Markovian model.  相似文献   

19.
A new experimental method is presented which is a useful approach in studying the reorientational dynamics in liquid crystals by means of dielectric measurements at microwave frequencies. The theoretical model is developed to describe the motion of the director when it is driven by two orthogonal electric or magnetic fields. A specific set up for the experimental apparatus is described. Experiments in fairly good agreement with the theoretical model are given for a nematic mesophase at different temperatures and field values. The capabilities of the method in monitoring the slow reorientational properties of collective molecular motions in liquid crystals are demonstrated. Possible refinements of the experimental apparatus to allow more quantitative measurements of the different physical parameters of anisotropic media are indicated.  相似文献   

20.
Using the combination of fluorescence resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS) technique, we investigate the mechanism and dynamics of the pH-induced conformational change of i-motif DNA in the bulk phases and at the single-molecule level. Despite numerous studies on i-motif that is formed from cytosine (C)-rich strand at slightly acidic pH, its detailed conformational dynamics have been rarely reported. Using the FRET technique to provide valuable information on the structure of biomolecules such as a protein and DNA, we clearly show that the partially folded species as well as the single-stranded structure coexist at neutral pH, supporting that the partially folded species may exist substantially in vivo and play an important role in a process of gene expression. By measuring the FCS curves of i-motif, we observed the gradual decrease of the diffusion coefficient of i-motif with increasing pH. The quantitative analysis of FCS curves supports that the gradual decrease of diffusion coefficient (D) associated with the conformational change of i-motif is not only due to the change in the intermolecular interaction between i-motif and solvent accompanied by the increase of pH but also due to the change of the shape of DNA. Furthermore, FCS analysis showed that the intrachain contact formation and dissociation for i-motif are 5-10 times faster than that for the open form. The fast dynamics of i-motif with a compact tetraplex is due to the intrinsic conformational changes at the fluorescent site including the motion of alkyl chain connecting the dye to DNA, whereas the slow intrachain contact formation observed from the open form is due to the DNA motion corresponding to an early stage interaction in the folding process of the unstructured open form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号