首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of fatty acids, octanoic acid, (2E, 4E)-hexa-2,4-dienoic acid, hexanoic acid, (2E)-but-2-enoic acid, and butyric acid on the activities of mushroom tyrosinase have been investigated. The results showed that the fatty acids can potently inhibit both monophenolase activity and diphenolase activity of tyrosinase, and that the unsaturated fatty acids exhibited stronger inhibitory effect against tyrosinase than the corresponding saturated fatty acids, and the inhibitory effects were enhanced with the extendability of the fatty acid chain. For the monophenolase activity, the fatty acids could not only lengthen the lag period, but also decrease the steady-state activities. For the diphenolase activity, fatty acids displayed reversible inhibition. Kinetic analyses showed that octanoic acid and hexanoic acid were mixed-type inhibitors and (2E,4E)-hexa-2,4-dienoic acid and (2E)-but-2-enoic acid were noncompetitive inhibitors. The inhibition constants have been determined and compared.  相似文献   

2.
Protein tyrosine phosphatase 1beta (PTP1beta) acts as a negative regulator of insulin signaling. Selective inhibition of PTP1beta has served as a potential drug target for the treatment of type 2 diabetes mellitus. We evaluated the inhibitory effect of Phellinus linteus against PTP1beta as part of our ongoing search for natural therapeutic and preventive agents for diabetes mellitus. Fractions of the P. linteus extract were found to exhibit significant inhibitory activities against PTP1beta. In an attempt to identify bioactive components, we isolated, from the most active ethyl acetate fraction, five hispidin derivatives (phelligridimer A, davallialactone, hypholomine B, interfungins A, and inoscavin A) and four phenolic compounds (protocatechuic acid, protocatechualdehyde, caffeic acid, and ellagic acid). The chemical structures of these compounds were elucidated from spectroscopic evidence and by comparison with published data. All the compounds strongly inhibited PTP1beta activity in an in vitro assay; their IC50 values ranged from 9.0 +/- 0.01 to 58.2 +/- 0.3 microM. Our results indicated that the hispidin skeleton may be an important moiety for inhibitory activity of the above compounds against PTP1beta. Thus, hispidin derivatives could be a potent new class of natural PTP1beta inhibitors.  相似文献   

3.
Lactate dehydrogenase (LDH) is a key enzyme in the glycolytic pathway of Plasmodium falciparum (pf) and has several unique amino acids, related to other LDHs, at the active site, making it an attractive target for antimalarial agents. Oxamate, a competitive inhibitor, shows high substrate affinity for pfLDH. This class of compounds has been viewed as potential antimalarial agents. Thus, we have developed an effective automated synthetic strategy for the rapid synthesis of oxamic acid and ester libraries to screen for potential lead inhibitors. One hundred sixty-seven oxamic acids were synthesized using a "catch and release" method with overall yields of 20-70%. Most of the compounds synthesized had some inhibitory effects, but compounds 5 and 6 were the most active against both chloroquine- and mefloquine-resistant strains with IC50 values of 15.4 and 9.41 microM and 20.4 and 8.40 microM, respectively. Some oxamic acids showed activities against pfLDH and mammalian LDH (mLDH) at the micromolar range. These oxamic acids selectively inhibited pfLDH 2-5 fold over mLDH. Oxamic acid 21 was the most active against pfLDH at IC50 = 14 and mLDH at IC50 = 25 microM, suggesting that oxamic acid derivatives are potential inhibitors of pfLDH and that further study is required to develop selective inhibitors of pfLDH over mLDH.  相似文献   

4.
为构筑V型对称结构的三唑并噻二唑类衍生物, 将间苯二甲酸和5-氨基间苯二甲酸分别与3-脂肪基-1,2,4-三唑(1)缩合, 在POCl3催化下, 合成了14个V型对称结构三唑并噻二唑稠环衍生物(2a~2g和3a~3g), 其中13个化合物为首次合成.通过红外光谱、 核磁共振波谱和高分辨质谱等对目标产物的结构进行了表征. 研究了目标产物对细胞周期分裂蛋白25B(Cdc25B)和蛋白酪氨酸磷酸酶1B(PTP1B)的抑制性能, 结果发现, 部分目标产物对Cdc25B表现出良好的抑制活性, 其中化合物3b和3f的抑制活性IC50值分别为(1.34±0.39)和(0.61±0.09) μg/mL, 有望作为治疗癌症的潜在Cdc25B抑制剂; 化合物3b~3g对PTP1B均表现出良好的抑制活性, 其中化合物3b和3e的IC50值分别为(0.36±0.05)和(0.97±0.08) μg/mL, 有望作为治糖尿病的潜在PTP1B抑制剂.  相似文献   

5.
It has been established that perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) can be considered as emerging persistent organic pollutants. In recent years, there was increasing distribution of PFOA/PFOS in environmental systems, and accumulation and toxic effects of PFOA/PFOS in human body. In this paper, quantum chemistry methods were employed to study the interaction between perfluorinated organic pollutants and base (uracil). The results showed that there were four stable binding modes between the two perfluorinated compounds with uracil, especially the second mode which caused the most detrimental physiological functional response. NBO analysis showed that reactive hydrogen in the two perfluorinated compounds had the greatest effect on the hydrogen bond. The nature of the hydrogen bond formed between the two perfluorinated compounds and base was investigated using the AIM theory. The changes of spectroscopic properties in complexes were analyzed by IR and NMR spectra.  相似文献   

6.
设计合成了18个以吡唑桥连1,3,4-噁二唑和1,3,5-三嗪的新型多杂环分子[7A(a~f),7B(a~f)和7C(a~f)];通过红外光谱(IR)、核磁共振波谱(NMR)和高分辨质谱(HRMS)等对目标分子进行了结构表征;评价了目标分子对蛋白酪氨酸磷酸酯酶1B(PTP1B)和细胞分裂周期25磷酸酯酶B(Cdc25B)的抑制活性.结果表明,所有目标分子对PTP1B和Cdc25B均有较好的抑制活性,其中,9个目标分子表现出优异的PTP1B和Cdc25B抑制效果,IC50值低于齐墩果酸(PTP1B抑制活性测试参照物)和正钒酸钠(Cdc25B抑制活性测试阳性参照物),有望成为潜在的PTP1B和Cdc25B抑制剂.  相似文献   

7.
N-trans- and N-cis-Feruloyltyramines were isolated as the inhibitors of in vitro prostaglandin (PG) synthesis from an Indonesian medicinal plant, Ipomoea aquatica (Convolvulaceae). In order to clarify structure activity relationships, cinnamoyl-beta-phenethylamines with possible combinations of naturally occurring cinnamic acids and beta-phenethylamines were synthesized and tested for their inhibitory activities against PG synthetase and arachidonate 5-lipoxygenase. The compounds containing catechol groups such as N-caffeoyl-beta-phenethylamine (CaP) showed higher inhibitory effects on PG synthetase. The catechol group was found to be essential for the inhibition of arachidonate 5-lipoxygenase. The investigation of concentration dependent effects on PG biosynthesis revealed that CaP enhanced PG biosynthesis at a lower concentration range, whereas it inhibited the reaction at a higher concentration. The effects of CaP on each reaction step were investigated with purified PG endoperoxide synthase and microsomal PG synthetase. CaP inhibited the cyclooxygenase reaction, while it enhanced the hydroperoxidase reaction. N-Acyldopamines which contain catechol and lipophylic group were synthesized from dopamine and fatty acids to test their inhibitory effects on arachidonate 5-lipoxygenase. N-Linoleoyldopamine was the most active compound and its IC50 value was 2.3 nM in our assay system, in which an IC50 value of AA 861, a specific inhibitor of 5-lipoxygenase, was 8 nM.  相似文献   

8.
DNA polymerase beta (pol beta) is the main polymerase involved in the base excision repair pathway responsible for repairing damaged bases in the DNA. Previous studies on the H285D mutant of pol beta suggested that the C-terminal region of the polymerase is important for polymerase function. In this study, the C-terminal region of pol beta was mutated to assess its role in polymerization. Kinetic experiments showed that the C-terminal region is required for wild-type polymerase activity. Additionally, an interaction between the fingers and palm subdomain revealed itself to be required for polymerase activity. The E316R mutant of pol beta was shown to have a 29,000-fold reduction in polymerization rate with no reduction in nucleotide binding, suggesting that there exists a noncovalent mechanistic step between nucleotide binding and nucleophilic attack of the primer 3'-hydroxyl group on the α-PO(4) of the nucleotide. Molecular modeling studies of the E316R mutant demonstrate that disrupting the interaction between Arg182 and Glu316 disrupts the packing of side chains in the hydrophobic hinge region and may be hampering the conformational change during polymerization. Taken together, these data demonstrate that the triad interaction of Arg182, Glu316, and Arg333 is crucial for polymerase function.  相似文献   

9.
A series of α-glucosidase inhibitors with the oleanolic acid core and different cinnamic amide ligands were designed and synthesized. Their preliminary structure-activity relationships were analyzed. In general, the compounds with 3,28-disubstituted oleanolic acid exhibited stronger activity than those 28-monosubstituted analogues, and variation of cinnamic amide substitution significantly affected α-glucosidase inhibition activities. Most of the compounds showed potent inhibitory activity against α-glucosidase with much greater efficacy than a typical α-glucosidase inhibitor, acarbose.  相似文献   

10.
全氟辛烷磺酸(PFOS)和全氟辛烷羧酸(PFOA)是两种典型的全氟有机酸类化合物,也是全氟化合物(PFCs)前体物的最终降解产物,具有肝毒性、胚胎毒性、生殖毒性、神经毒性,检出率最高。在各种被污染的介质中,PFOS和PFOA含量往往很低,基体复杂多样,快速高效的样品前处理技术成为测定的关键环节。目前,国际上对PFOS和PFOA的测定无统一标准,而我国关于PFCs的分析研究落后于国际发展水平。该文介绍了PFOS和PFOA的特性,系统总结和评述了前处理技术(液液萃取、固相萃取、固相微萃取、超声萃取和QuEChERS法)及分析方法(色谱-质谱方法、光谱法、酶联免疫法和电化学法),以期为PFOS和PFOA的分析监测及标准制定提供参考。  相似文献   

11.
BACKGROUND: Hormones, lipids, vitamins and other biologically active small molecules can be removed from animal tissues by extraction with organic solvents. These compounds can have dramatic effects on cultured cells and the characterization of such compounds can lead to the discovery of new functions for known molecules, or even to the discovery of previously unknown compounds. RESULTS: Organic-soluble compounds in 17.5-day-old mouse embryos were removed with tert-butylmethylether and found to induce apoptosis in T-antigen-transformed Jurkat T cells. These embryonic extracts were fractionated and their apoptosis-inducing components were identified as a mixture of polyunsaturated fatty acids, including arachidonic, docosatetraenoic and docosahexaenoic acids. Docosatetraenoic acid was the most potent apoptosis inducer with an effective dose (ED(50)) of 30 microM. CONCLUSIONS: A family of polyunsaturated fatty acids is shown to be abundant in utero during pregnancy. Members of this family are able to induce cleavage of poly(ADP)ribose polymerase, and ultimately to induce apoptosis, in T-antigen-transformed Jurkat T cells. Free radical scavengers, including phenol and benzyl alcohol, block the apoptosis-inducing properties of these polyunsaturated fatty acids; this is consistent with a lipid peroxidation mechanism involving formation of hydroperoxy fatty acids.  相似文献   

12.
Differences in the pattern and chemical nature of fatty acids of lipid A of Neisseria meningitides lipooligosaccharides (LOS) and Escherichia coli lipopolysaccharides (LPS) may account for differences in inflammatory properties. Furthermore, there are indications that dimeric 3-deoxy-D-manno-oct-2-ulosonic acid (KDO) moieties of LOS and LPS enhance biological activities. Heterogeneity in the structure of lipid A and possible contaminations with other inflammatory components have made it difficult to confirm these observations. To address these problems, a highly convergent approach for the synthesis of a lipid A derivative containing KDO has been developed, which relies on the ability to selectively remove or unmask in a sequential manner an isopropylidene acetal, 9-fluorenylmethoxycarbonyl (Fmoc), allyloxycarbonate (Alloc), azide, and thexyldimethylsilyl (TDS) ether. The strategy was employed for the synthesis of N. meningitidis lipid A containing KDO (3). Mouse macrophages were exposed to the synthetic compound and its parent LOS, E. coli lipid A (2), and a hybrid derivative (4) that has the asymmetrical acylation pattern of E. coli lipid A, but the shorter lipids of meningococcal lipid A. The resulting supernatants were examined for tumor necrosis factor alpha (TNF-alpha) and interferon beta (IFN-beta) production. The lipid A derivative containing KDO was much more active than lipid A alone and just slightly less active than its parent LOS, indicating that one KDO moiety is sufficient for full activity of TNF-alpha and IFN-beta induction. The lipid A of N. meningitidis was a significantly more potent inducer of TNF-alpha and IFN-beta than E. coli lipid A, which is due to a number of shorter fatty acids. The compounds did not demonstrate a bias towards a MyD88- or TRIF-dependent response.  相似文献   

13.
Two new hopane type triterpenes, named dryopteric acids A (1) and B (2), were isolated from the Rhizome of Dryopteris crassirhizoma (Aspiadaceae) together with sixteen known compounds (3-18). Of isolated compounds, ursolic acid (15), and dryopteric acid A (1) and B (2) showed potent inhibitory activities against HIV-1 protease with IC50 values of 8.9-44.5 microM. In addition, acetylated compounds 1 and 2 appreciably increased inhibitory activities with their IC50 values of 1.7 and 10.8 microM, respectively.  相似文献   

14.
The aim of this study was to investigate the chemical composition, antioxidant and enzyme inhibitory activities of methanol (MeOH) extracts from Onosma bourgaei (Boiss.) and O. trachytricha (Boiss.). In addition, the interactions between phytochemicals found in extracts in high amounts and the target enzymes in question were revealed at the molecular scale by performing in silico molecular docking simulations. While the total amount of flavonoid compounds was higher in O. bourgaei, O. trachytricha was richer in phenolics. Chromatographic analysis showed that the major compounds of the extracts were luteolin 7-glucoside, apigenin 7-glucoside and rosmarinic acid. With the exception of the ferrous ion chelating assay, O. trachytricha exhibited higher antioxidant activity than O. bourgaei. O. bourgaei exhibited also slightly higher activity on digestive enzymes. The inhibitory activities of the Onosma species on tyrosinase were almost equal. In addition, the inhibitory activities of the extracts on acetylcholinesterase (AChE) were stronger than the activity on butyrylcholinesterase (BChE). Molecular docking simulations revealed that luteolin 7-glucoside and apigenin 7-glucoside have particularly strong binding affinities against ChEs, tyrosinase, α-amylase and α-glucosidase when compared with co-crystallized inhibitors. Therefore, it was concluded that the compounds in question could act as effective inhibitors on cholinesterases, tyrosinase and digestive enzymes.  相似文献   

15.
Scopadulcic acid B derivatives were synthesized and their antiviral activities against herpes simplex virus type 1 (HSV-1) were examined. All the derivatives synthesized showed lower inhibitory activities against HSV-1 than scopadulcic acid B (2). Five compounds, 7, 8, 15, 16, and 18, however, had in vitro therapeutic indexes larger than 7 and were considered to merit further investigation.  相似文献   

16.
It was shown for the first time by computer experiments that fatty acids are strongly bound to DNA. This is consistent with the presence of free fatty acids in the specimens of DNA-bound lipids isolated from various cells. Binding of all fatty acids to the DNA minor groove is stronger than to the major groove, which is correlated with the presence of two pools of free fatty acids isolated from DNA specimens by biochemical methods. Since DNA polymerase is also bound to the DNA minor groove, fatty acids can play an important role in the regulation mechanism of DNA replication and signal transmission. The energy of interaction of fatty acids with DNA depends on both the number of double bonds and the geometric configuration of the fatty acid and the nucleotide composition of DNA. Dependence on the bond energy in the DNA—fatty acid complex on the nucleotide composition attests to the possibility of site-specific binding of lipids to DNA. On passing from a saturated fatty acid to unsaturated acids containing one, two, or three double trans-bonds, the bond energy of DNA with the fatty acid gradually decreases. The presence of one or three double cis-bonds results in weakening of the strength of the DNA—fatty acid complexes compared to those with the saturated acid. The strongest binding between DNA and fatty acid was found for the unsaturated acid with two double cis-bonds (linoleic). This can be explained by the fact that the bent (boomerang) shape of the molecule of this acid follows the curve of the DNA helix. The pattern of variation of the energy of DNA complexes with stearic, linoleic, oleic, and linolenic acids correlates with experimental data on the melting points of these complexes: the more stable the DNA—fatty acid complex, the lower the melting point of DNA.  相似文献   

17.
High cost of triacylglycerol lipid feedstock is the major barrier for commercial production of biodiesel. The fermentation of oleaginous yeasts for lipid production using lignocellulose biomass provides a practical option with high economic competitiveness. In this paper, the typical oleaginous yeast strains were screened under the pressure of lignocellulose degradation compounds for selection of the optimal strains tolerant to lignocellulose. The inhibitory effect of lignocellulose degradation products on the oleaginous yeast fermentation was carefully investigated. Preliminary screening was carried out in the minimum nutritious medium without adding any expensive complex ingredients then was carried out in the lignocellulosic hydrolysate pretreated by dilute sulfuric acid. Seven typical lignocellulose degradation products formed in various pretreatment and hydrolysis processing were selected as the model inhibitors, including three organic acids, two furan compounds, and two phenol derivatives. The inhibition of the degradation compounds on the cell growth and lipid productivity of the selected oleaginous yeasts were examined. Acetic acid, formic acid, furfural, and vanillin were found to be the strong inhibitors for the fermentation of oleaginous yeasts, while levulinic acid, 5-hydroxymethylfurfural, and hydroxybenzaldehyde were relatively weak inhibitors. Trichosporon cutaneum 2.1374 was found to be the most adopted strain to the lignocellulose degradation compounds.  相似文献   

18.
The chemical composition and antimicrobial activity of the essential oils obtained by hydrodistillation from Centaurea pannonica (Heufel) Simonkai and C. jacea L. (Asteraceae), were investigated. The essential oils were analyzed by GC and GC-MS. Forty five and twenty nine compounds were identified in the two oils, respectively. C. pannonica oil was rich in fatty acids (43.7%), with 9-octadecanoic acid (34.0%) and (Z,Z)-9,12-octadecadienoic acid (8.6%) as the major compounds. In contrast, the essential oil of C. jacea was dominated by oxygenated sesquiterpenes (43.2%), among which caryophyllene oxide (23.5%) and spathulenol (8.9%) were the major constituents. However, the oil was also characterized by an important fatty acid fraction (15.5%), with 9-octadecanoic acid (8.9%) and hexadecanoic acid (6.6%) being the main components. The antimicrobial activities of the essential oils were evaluated by the microdilution method against three Gram-positive and three Gram-negative bacteria, and one yeast. Both oils exhibited significant antimicrobial activity, especially against Gram-positive bacteria.  相似文献   

19.
Sulfoquinovosyldiacyglycerol (SQDG) has a wide range of biological activities that make it an attractive compound for the development of new drugs. Chemically synthesized beta-SQDG-C(18:0) (1,2-di-O-stearoyl-3-O-(6-deoxy-6-sulfo-beta-d-glucopyranosyl)-sn-glycerol), for example, has a potent inhibitory effect on DNA polymerases. We investigated the properties of the vesicle form of beta-SQDG-C(18:0) as the monomer has low solubility in water. The structure of the beta-SQDG-C(18:0) vesicles are highly influenced by NaCl concentration in preparation process. At low NaCl concentrations, the beta-SQDG-C(18:0) vesicles have high surface curvature and form small unilamellar vesicles. Increases in NaCl concentration, resulted in decreased surface curvature and a tendency for beta-SQDG-C(18:0) to form large multilamellar vesicles. The small unilamellar vesicles showed a potent inhibitory effect on DNA polymerase beta, whereas the large multilamellar vesicles had no such effect. We investigated further the relationship between vesicle size and activity by preparing smaller vesicles (262, 99 and 43 nm in diameter) using an extrusion technique. These smaller vesicles had a greater inhibitory effect on DNA polymerase beta activity than non-extruded vesicles. beta-SQDG-C(18:0) vesicles, especially those of small size, were effective in DNA polymerase inhibition and are expected to have high applicability in DNA polymerase study.  相似文献   

20.
Five C(16)-alkynic fatty acids (2-6) were prepared and examined their inhibitory effects on cancer cell invasion. It has been found that hexadeca-6,8,10-triynoic acid (5) and hexadeca-8,10,12-triynoic acid (6) exhibit similar potent inhibitory activities with that of octadeca-8,10,12-triynoic acid (1) which was isolated from Scurrula atropurpurea (Loranthaceae).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号