首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A unique triblock surfactant is reported that allows for the efficient microemulsification of triglycerides. Unlike the results of all previous efforts, these triglyceride microemulsions can be formed without the use of cosurfactants or dilution with co-oils and follow the classical patterns of surfactant phase behavior exhibited by mixtures of water, alkane oils, and nonionic oligoethylene glycol surfactants, i.e., progression from oil/water emulsions to one-phase microemulsions to water/oil emulsions with increasing temperature. Lamellar phases that usually dominate the aqueous phase behavior of surfactant/triglyceride mixtures are suppressed, allowing for the formation of single-phase microemulsions containing equal amounts of triglyceride and water. These isotropic and low-viscous fluids are particularly useful for cleansing and delivery of functional ingredients in skin care products. The effects of mixing a variety of typical skin care ingredients and components of sebum (skin oil) were also explored. Fatty acids significantly reduce the average microemulsion temperature, while other ingredients and oils, which do not partition at the oil/water interface, have less impact on the phase behavior. In all cases, one-phase microemulsions containing equal amounts of oil and water can be formed even at high additive concentrations. Indeed, partial replacement oftriglyceride with any of the additives examined consistently reduced the amount of surfactant necessary to form single-phase microemulsions. However, the greatest boost in surfactant efficiency was found with the addition of medium molecular weight amphiphilic block copolymers.  相似文献   

2.
We propose that one can deduce very insightful information regarding the drug and fatty acid binding capacity of microemulsions through simple turbidity experiments. Pluronic F127-based oil-in-water microemulsions of various compositions were synthesized and titrated to turbidity with concentrated amitriptyline, an antidepressant drug. We observed that, above certain Pluronic F127 concentrations, turbidity was never observed, irrespective of how much amitriptyline was added to the microemulsion. We also observed that whenever sodium caprylate fatty acid was not included in the microemulsion formulation, turbidity never occurred. On the basis of these findings, we were able to determine the point at which all sodium caprylate present in the microemulsion formulation was bound to the F127 in the microemulsion (i.e., no fatty acid was free in the bulk in monomer form). By the same logic we were also able to determine how much amitriptyline was binding to the microemulsions. We also measured the dynamic surface tension, foamability, and fabric wetting time of the microemulsion formulations to further prove the hypothesis that all fatty acid is bound to the F127 in the microemulsion above a critical Pluronic F127 concentration. On the basis of this research, we have concluded that there are approximately 11 molecules of sodium caprylate fatty acid bound per molecule of Pluronic F127 and approximately 12 molecules of amitriptyline bound per molecule of Pluronic F127 in the optimal microemulsion formulation. These findings give us valuable information about the charge density at the oil/water interface and about the mechanism of binding of the drug to the microemulsion.  相似文献   

3.
We hypothesized that custom-designed microemulsions would effectively scavenge compounds from bulk media. Pluronic-based oil-in-water microemulsions were synthesized that efficiently reduced the free concentration of the local anesthetic bupivacaine in 0.9% NaCl. Both the molecular nature and concentration of the constituents in the microemulsions significantly affected extraction efficiencies. Pluronic F127-based microemulsions extracted bupivacaine more efficiently than microemulsions synthesized using other Pluronic surfactants (L44, L62, L64, F77, F87, F88, P104). Extraction was markedly increased by addition of fatty acid sodium salts due to greater oil/water interface area, increased columbic interaction between bupivacaine and fatty acids sodium salt, and greater surface activity. These data suggest that oil-in-water microemulsions may be an effective agent to treat cardiotoxicity caused by bupivacaine or other lipophilic drugs.  相似文献   

4.
溶胀胶束是表面活性剂胶束增溶其它物质后使胶束膨胀的一种胶束状态,因其能显著提高难溶性物质的溶解度而备受关注。针对近年来对溶胀胶束的研究进展,综述了溶胀胶束的最大增溶量、增溶过程以及增溶后形貌尺寸的变化等问题,总结了影响胶束增溶作用的因素,厘清了溶胀胶束与微乳液的异同,介绍了溶胀胶束的应用,展望了其应用前景与发展方向。  相似文献   

5.
Marsh A  Clark B  Broderick M  Power J  Donegan S  Altria K 《Electrophoresis》2004,25(23-24):3970-3980
Microemulsion electrokinetic chromatography (MEEKC) is an electrodriven separation technique. Separations are typically achieved using oil-in-water microemulsions, which are composed of nanometre-sized droplets of oil suspended in aqueous buffer. The oil droplets are coated in surfactant molecules and the system is stabilised by the addition of a short-chain alcohol cosurfactant. The novel use of water-in-oil microemulsions for MEEKC separations has also been investigated recently. This report summarises the different microemulsion types and compositions used to-date and their applications with a focus on recent papers (2002-2004). The effects of key operating variables (pH, surfactant, cosurfactant, oil phase, buffer, additives, temperature, organic modifier) and methodology techniques are described.  相似文献   

6.
The purpose of this study was to evaluate the viability and permeability of carbamazepine (CBZ) solubilized in fully dilutable non-ionic microemulsions across Caco-2 cells used as a model for intestinal epithelium. Maximum solubilization capacity (SC) of CBZ was determined within water-in-oil (W/O), bicontinuous and oil-in-water (O/W) structures formed upon dilution. The effect of the nature of the oil phase, surfactant type, and the ratio between the oil phase and surfactant on the quantity of solubilized CBZ, droplets size, the viability of the cells and drug permeability was elucidated. We found that: (1) several fully dilutable microemulsions based on pharma-grade ingredients can be loaded with very significant amounts of CBZ, (2) W/O microemulsions (10wt% water) exhibit up to 3-fold higher solubilization capacity over the drug's solubility in oil (triacetin), (3) CBZ in the O/W microemulsions (80wt% water) exhibit up to 29-fold higher solubilization than in water, (4) the O/W droplets of the examined systems are 9-11nm in size, (5) the highest permeability was obtained in systems containing triacetin/alpha-tocopherol acetate/ethanol in 3/1/4wt% ratio as oil phase and Tween 60 as surfactant, (6) the replacement of alpha-tocopherol acetate by alpha-tocopherol inhibits CBZ release, (7) replacement of a saturated chain of Tween 60 by an unsaturated (Tween 80) or shorter chain (Tween 40) inhibited drug release, (8) the decrease in the oil phase to surfactant ratio leads to enhancement of drug release (dilution line 64>dilution line 73).  相似文献   

7.
In order to be used as drug carriers, Pluronic micelles require stabilization to prevent degradation caused by significant dilution accompanying IV injection. This article studies three routes of Pluronic micelle stabilization. The first route was direct radical crosslinking of micelles cores which resulted in micelle stabilization. However, this compromised the drug loading capacity of Pluronic micelles. In the second route, a small concentration of vegetable oil was introduced into diluted Pluronic solutions. This decreased micelle degradation upon dilution while not compromising the drug loading capacity of oil-stabilized micelles. The third route was a novel technique based on polymerization of the temperature-responsive LCST hydrogel in the core of Pluronic micelles. The hydrogel phase was in a swollen state at room temperature, which provided a high drug loading capacity of the system. The hydrogel collapsed at physiological temperatures which locked the core of micelles thus preventing them from fast degradation upon dilution. This new drug delivery system was called Plurogel®. Phase transitions in Plurogel® caused by variations in temperature or concentration were studied by the EPR. The effect of Pluronic concentration in the incubation medium on the intracellular uptake of two anti-cancer drugs was studied. At low Pluronic concentrations, when the drugs were located in the hydrophilic environment, drug uptake was increased, presumably due to the effect of a polymeric surfactant on the permeability of cell membranes. In contrast, when the drugs were encapsulated in the hydrophobic cores of Pluronic micelles, drug uptake by the cells was substantially decreased. This may be advantageous in the prevention of undesired drug interactions with normal cells. Ultrasonication enhanced intracellular drug uptake from dense Pluronic micelles. These findings permitted the formulation of a new concept of a localized drug delivery.  相似文献   

8.
Celecoxib (clxb) is an important drug for treatment of rheumatoid arthritis and osteoarthritis by specifically inhibiting the enzyme cyclooxygenase-2 (COX-2). Clxb is a type 2 drug characterized by low water solubility (<5 mug/ml) and fast transmembrane transport. The present formulations require high dosage since the transmembrane transport fluctuates and is very difficult to control. Dissolving the drug within an oil phase was not practical since its dissolution was very small and its dispersion in water was impossible. In our recent studies, we learned to construct U-type phase diagrams and to formulate reverse microemulsions (oil-based concentrates) that are progressively and fully dilutable with aqueous phase. In the present study, we solubilized clxb in nanostructures of reverse micelles of U-type nonionic microemulsions that consisted of R(+)-limonene, alcohol, propylene glycol (PG), and hydrophilic surfactant (Tween 60). The solubilization capacity of the drug in these systems is many times higher than in either the oil or the aqueous phase. The clxb solubilized microemulsions are fully diluted with aqueous phase without phase separation. The solubilization capacity decreases as the water content increases. Electrical conductivity, viscosity, and self-diffusion (SD) coefficients of the microemulsion components were measured along a suitable water dilution line. The three major microemulsion regions were detected and the transitions between the W/O to bicontinuous phase and from this phase to the O/W droplets were identified (at 30 and 70 wt% aqueous phase, respectively). From the SD coefficients, it was found that the drug is initially solubilized at the interface of the W/O droplets and there are no significant structural changes. The transition to a bicontinuous phase occurs at the same water content as in the empty (i.e., without drug) system. From the viscosity profiles, we concluded that the drug affects the structure of the bicontinuous phase as reflected in the water content at which the oil-continuous network is destroyed and full inversion occurs (50 vs 55 wt% in the drug-loaded system). Upon further dilution the drug remains solubilized at the interface and is oriented with its hydrophilic part facing the water, and is strongly affects the inversion to O/W droplets. From Small Angle X-ray Scattering (SAXS) measurements we learned that the drug effects the structure of microemulsion droplets and forms "ill-defined structures," probably less spherical. Yet, the overall droplet sizes at the high dilutions did not change very much.  相似文献   

9.
Microemulsions have received great attention for applications in transdermal drug delivery. The use of curcumin for treating various skin diseases like scleroderma, psoriasis, and skin cancer was extensively reported. The solubility of curcumin in various oils, surfactants, and cosurfactants was studied herein in order to find the optimal components for a transdermal delivery vehicle. Microemulsion systems composed of eucalyptol, polysorbate 80, ethanol, and water were developed as transdermal delivery vehicles for curcumin. Effects of the microemulsion composition on transdermal curcumin delivery were studied using Franz diffusion cells. The transdermal curcumin flux, permeability coefficient, and enhancement ratio were analyzed to evaluate the effects of eucalyptol/water ratios in the microemulsions. Pseudo-ternary phase diagrams of the eucalyptol microemulsions with various surfactant/cosurfactant ratios (1:1-1:3) were constructed to investigate their phase behaviors. Conductivity, interfacial tension, size, and viscosity data of the microemulsions were used to characterize the physicochemical properties of transdermal vehicles. The influence of the microemulsions on skin histology and on the delivery route was analyzed using hematoxylin/eosin staining and confocal laser scanning microscopy. In conclusion, microemulsions were successfully developed for transdermal curcumin delivery after screening various components and adjusting the oil/water ratios. The curcumin permeation rate of the microemulsion developed was 15.7-fold higher than that of the control (eucalyptol only). These results indicate that an eucalyptol microemulsion system is a promising tool for the percutaneous delivery of curcumin.  相似文献   

10.
The present study is focused on the evaluation of the interfacial composition, thermodynamic properties, and structural parameters of water-in-oil mixed surfactant microemulsions [(cetylpyridinium chloride, CPC+polyoxyethylene (20) cetyl ether, Brij-58 or polyoxyethylene (20) stearyl ether, Brij-78)/1-pentanol/n-heptane, or n-decane] under various physicochemical environments by the Schulman method of cosurfactant titration of the oil/water interface. The estimation of the number of moles of 1-pentanol at the interface (n(a)(i)) and bulk oil (n(a)(o)) and its distribution between these two domains at the threshold level of stability have been emphasized. The thermodynamics of transfer of 1-pentanol from the continuous oil phase to the interface have been evaluated. n(a)(i),n(a)(i), standard Gibbs free energy (ΔG(t)(0)), standard enthalpy (ΔH(t)(0)), and standard entropy (ΔG(t)(0)) of transfer process have been found to be dependent on the molar ratio of water to surfactant (ω), type of nonionic surfactant and its content (X(Brij-58 or Brij-78)), oil and temperature. A correlation between (ΔH(t)(0)) and (ΔS(t)(0)) is examined at different experimental temperatures. Bulk surfactant composition dependent temperature insensitive microemulsions have been reported. Associated structural parameters, such as droplet dimensions and aggregation number of surfactant and cosurfactant at the droplet interface have been evaluated using a mathematical model after suitable modifications for mixed surfactant systems. In light of these parameters, the prospect of using these microemulsion systems for the synthesis of nanoparticles and the modulation of enzyme activity has been discussed. Correlations of the results in terms of the evaluated physicochemical parameters have been attempted.  相似文献   

11.
Pluronic F-127 (PLF-127) gels were evaluated as a sustained-release vehicle for intraperitoneal administration of mitomycin C (MMC) in order to enhance the therapeutic effects of MMC against a Sarcoma-180 ascites tumor in mice. Tumor cell injections were made on day 0 and injections of MMC in 25% (w/w) PLF-127 on day 1, both intraperitoneally. A prolongation of the life span of tumor-bearing mice following injection of therapeutic PLF-127 was noted, and PLF-127 containing MMC was therapeutically more active than free drug. The high chemotherapeutic efficiency of MMC in PLF-127 was striking at high doses, which would be toxic in the case of the drug alone. PLF-127 gels exhibit reverse thermal behavior and are fluid at refrigerator temperature, but are soft gels at body temperature. The in vitro release experiments indicated that Pluronic gel might serve as a rate-controlling barrier and be useful as a vehicle for sustained-release preparations of MMC to be administered intraperitoneally. These results suggest that sustained-release occurs in the peritoneum and that effective drug concentrations can be maintained by the preparation.  相似文献   

12.
The effects of surfactant mixing on interfacial tension and on microemulsion formation were examined for systems of air/water and water/supercritical CO2 (scCO2) interfaces and for water/scCO2 microemulsions. A fluorinated surfactant, sodium bis(1H,1H,2H,2H-heptadecafluorodecyl)-2-sulfosuccinate (8FS(EO)2), was mixed with the three hydrocarbon surfactants, Pluronic L31, Tergitol TMN-6, and decyltrimethylammonium chloride (DeTAC), at equimolar ratio. For all the cases, the interfacial tension was significantly lowered by the mixing. The positive synergistic effect suggests that the mixed surfactants tend to pack more closely on the interface than the pure constituents. It was found, however, that the microemulsion formation in scCO2 was never facilitated by the mixing, except for the case of TMN-6. This is probably due to the segregation of the surfactants into hydrocarbon-rich and fluorocarbon-rich phases on the microemulsion surface.  相似文献   

13.
 Tetraethylammonium perfluorooctyl sulfonate (TEAFOS; critical micelle concentration, 1 mM), which forms a threadlike micelle in its pure solution, was adopted to study the structure of salted-out, solubilized micelles and microemulsions by cryogenic transmission electron microscopy. The concentration of the surfactant was kept constant at 60 mM. The micelle solution salted out with LiNO3 provided a surfactant phase in the presence of a clear interface. The surfactant phase was studded, being formed of homogeneously dispersed spherical micelles, and had no obvious threadlike forms. The micelles, which solubilized the maximum amount of perfluorinated oil, were spherical and had the same size as isolated spherical micelles in pure TEAFOS solution. The microemulsions were formed in the presence of perfluorinated alcohol as cosurfactant and the particles were rotund even when the concentration of the perfluorinated oil was equivalent to that for solubilization and the sizes increased with increasing oil content. The difference in size between the solubilized micelles and microemulsions with the same amount of oil suggested that the oil molecules had been solubilized between palisades of perfluorinated alkyl chains in the micelles and had dissolved in the cores of the microemulsions. Received: 10 September 1999/Accepted: 2 December 1999  相似文献   

14.
A series of microemulsions, both W/O and O/W, based on nonionic surfactants of the form (NP(EO)n), were prepared using the titration method. Mixing a constant weight of surfactant with a constant volume of the dispersed phase and an initial volume of continuous phase produces an emulsion, which is titrated to clarity with another surfactant (cosurfactant). Plotting (a) the volume of cosurfactant necessary to transform an emulsion into a microemulsion containing a fixed volume of dispersed phase and constant weight of surfactant versus (b) different initial continuous-phase volumes yields a straight line. Extrapolating from experimentally determined values for the cosurfactant volume to the value corresponding to a zero-volume continuous phase allows the determination of the surfactant molar composition and the average number of ethylene oxides (EO) per nonylphenol adsorbed at the interface. Using a surfactant with the same number of ethylene oxides yields a single-surfactant microemulsion. Measurement of surfactants transmittance in the oil and water phases demonstrates that microemulsification occurs when the surfactant interfacial film is equally soluble in the two phases. Surface pressure measurements reveal that oil penetration impedes formation of O/W microemulsions with n-tetradecane or n-hexadecane as dispersed phase. Conductance, particle size, and transmittance measurements show that above a certain dispersed-phase volume percolation of the microemulsion occurs.  相似文献   

15.
The microstructure of o/w microemulsions, stabilized by sodium dodecyl benzene sulfonate (SDBS) and sodium dodecyl sulfate (SDS) with different cosurfactants, has been studied by partitioning of a dye, phenol red, between the oil‐water interface and bulk water. The cosurfactants used are propan‐1‐ol, propan‐2‐ol, butan‐1‐ol, butan‐2‐ol, pentane‐1‐ol, pentane‐2‐ol, and pentan‐3‐ol. The effects of changing the oil volume fraction and surfactant‐cosurfactant w/w ratio on the oil‐water interface and droplet size have also been discussed. Larger droplet size was predicted for SDS than SDBS. The predicted droplet radius increased with increase in the oil fraction, decrease in the surfactant concentration, increase in the C‐number of the linear cosurfactant, and decrease in branching of the cosurfactant. Surfactant‐cosurfactant ratio and pH did not affect the droplet size significantly. The minimum concentrations of surfactants with which microemulsions were formed were found to be higher for larger oil fraction, smaller C‐number of the alcohol, more branching of the alcohol, and higher pH.  相似文献   

16.
Conductivity of water-in-oil microemulsions stabilized by mixed surfactants   总被引:3,自引:0,他引:3  
The electrical conductivity of D2O-in-n-heptane microemulsions stabilized by cationic/nonionic surfactant mixtures was studied as a function of D2O content, surfactant concentration, and surfactant mixture composition. The surfactants employed were cationic di-n-didodecyldimethylammonium bromide, DDAB, nonionic poly(oxyethylene) monododecyl ethers, C12EJ, with J=3-8 and 23, nonionic polymeric surfactants of the type PEO-PPO-PEO (Pluronic), and the reverse structure analogues (Pluronic R). Qualitative structural information was drawn from a comparison between the measured conductivity and that predicted by the charge fluctuation model for spherical droplets. The conductivity versus water content curves were found to be typical for water-in-oil systems composed of spherical droplets. From the effect of blending nonionic surfactant with DDAB on the measured conductivities, it was concluded that microemulsion conductivity is independent of the concentration of cationic surfactant (DDAB). This finding agrees well with theoretical microemulsion conductivity models.  相似文献   

17.
The adsorption of surfactant and cosurfactant on the surface of the globules decreases the interfacial tension between oil and water to very low values. In addition, the decrease of the bulk concentrations of the surfactant and cosurfactant decreases their chemical potential both in the bulk and at the interface, thus decreasing the free energy of the system (dilution effect). The thermodynamic stability of microemulsions is due to the fact that the total free energy change caused by these effects can become negative. The theory can explain the occurence of stable microemulsions for both non-ionic and ionic surfactants.  相似文献   

18.
Microemulsions (ME) containing hexadecyltrimethylammonium bromide (HTAB)/ethanol as surfactant, isopropylmyristate (IM) or butylstearate (BS) as oil phase and aqueous buffer were studied. Pseudo-ternary phase diagrams of the investigated systems were obtained at constant surfactant/cosurfactant molar ratio (1:5) by titration in order to characterize the proportions between the components to obtain clear systems. Oil in water microemulsions were prepared in a wide range of phase volume (phi). UV-vis absorption spectra of naproxen at pH 5.5 showed that the solubility of Np increases significantly in the presence of O/W ME in high phase volumes. For both, IM and BS microemulsions, the dynamic light scattering experiments showed that the size of the oil droplets remains constant in low values of phi, increasing abruptly in high phi values. Phase solubility study revealed that for both IM and BS microemulsions, the drug incorporation followed a straight-line profile in all range of phi. The data could be analyzed through the phase-separation model and the association constants (K) calculated varied from 27 to 90 M(-1), depending on the pH and on the microemulsion oil phase.  相似文献   

19.
研究了一些流动载体对以二-(2-乙基己基)磺化琥珀酸钠(AOT)为表面活性剂、正庚 烷为油性溶剂的W/O型微乳状液在迁移痕量金属离子Cu2+的影响。实验结果表明,1-(2-吡 啶偶氮)-2萘酚(PAN)能大大促进 Cu2+的迁移,使其迁移率从 70%上升到 100%。用高盐度 溶液对微乳进行破乳,得到 Cu2+的富集倍数为 6,回收率约为 100%。  相似文献   

20.
In this work structural features of anionic microemulsions, containing the pharmaceutical biocompatible components soya phosphatidylcholine (SPC), eumulgin HRE 40 (EU) and sodium oleate (SO) as surfactant, cholesterol (CHO) as oil phase and aqueous buffer were studied. Microemulsions were formulated with and without the antitumor drug doxorubicin (DOX). The various microstructures characterized in the pseudo-ternary phase diagram were analyzed by polarized light microscopy, small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD) as well as by their ability to incorporate and release DOX. The experimental results demonstrated a correlation between the composition, the structural features and drug delivery. It was found that at higher cholesterol contents, the crystallization of CHO polymorph phases changed the mobility of DOX molecules. Droplets were formed with short-range spatial correlation from a microemulsion (ME) with a low surfactant:oil ratio. More ordered structures with lamellar arrangements formed by the increasing of the CHO proportions in the formulation may be due to CHO crystallization. The in vitro release of DOX showed that the presence of a high content of crystalline CHO prolongs the release of DOX from ME. The retention of DOX in the internal oil phase of the ME may modulate the drug release for a prolonged time. These results clearly demonstrate the potential of ME as a drug-delivery system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号