首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The kinetics of nonisothermal adsorption from a limited volume with consideration of the dependence of the differential heat of adsorption and the intracrystalline diffusion coefficient on the degree of filling were mathematically modeled. A model of the adsorption kinetics which explains the appearance of extremes on the experimental kinetic adsorption curves in adsorption of water by CaA zeolite was proposed. It was shown that a decrease in the differential heat of adsorption with an increase in the degree of filling is a necessary condition for the appearance of extremes on the kinetic adsorption curves.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 6, pp. 1228–1233, June, 1990.  相似文献   

2.
We found that activated carbon effectively removed urea from solution and that urea adsorption onto activated carbon followed a pseudo-second-order kinetic model. We classified the urea adsorption on activated carbon as physical adsorption and found that it was best described by the Halsey adsorption isotherm, suggesting that the multilayer adsorption of urea molecules on the adsorption sites of activated carbon best characterized the adsorption system. The mechanism of adsorption of urea by activated carbon involved two steps. First, an amino (–NH2) group of urea interacted with a carbonyl (–C?O) group and a hydroxyl (?OH) group on the surface of activated carbon via dipole–dipole interactions. Next, the –C?O group of the urea molecule adsorbed to the activated carbon interacted with another –NH2 group from a second urea molecule, leading to multilayer adsorption.  相似文献   

3.
The thermodynamics of adsorption of mono-, di-, and tricyclic aromatic compounds by MIL-53(Al) metal-organic framework from their solutions in MeCN, MeOH and n-C6H14–PriOH was studied for the first time. It was found that the adsorption of the test substances from solutions in MeCN and MeOH is characterized by positive values of enthalpy and entropy changes, and the adsorption from n-C6H14–PriOH medium is characterized by negative enthalpy and entropy changes. Upon adsorption by MIL-53(Al) framework from polar media, aromatic compounds were proposed to transfer from the liquid phase with a higher degree of association into the solvent medium with a lower degree of association, molecules of which are disordered due to the strong interaction with the hydrophobic walls of the framework pores. It was concluded that the driving force of adsorption by MIL-53(Al) from MeCN and MeOH is increase in entropy of the system, while the factor of adsorption from n-C6H14–PriOH medium is decrease in enthalpy of the adsorption system. The compensation effect in liquid-phase adsorption of aromatic compounds by MIL-53(Al) framework was discovered. The effect of the liquid phase nature on selectivity of adsorption from solutions onto investigated metal-organic framework was demonstrated.  相似文献   

4.
Adsorption of hafnium on manganese dioxide from nitric and perchloric acid solutions has been studied and optimized with respect to shaking time, concentration of acid, oxide and metal. Maximum adsorption has been noticed from 0.1 mol · dm–3 acid solutions in 20 minutes around 10–5 mol · dm–3 hafnium concentration. The adsorption of hafnium follows a Freundlich adsorption isotherm. Oxalate, thiosulfate, Na(I) and Al(III) from nitric acid and K(I) and Zn(II) from perchloric acid increase the adsorption, whereas all other anions and cations tested reduce the adsorption from both media Fe(III) and Sn(IV) significantly. Zn(II) and Co(II) show low adsorption affinity.  相似文献   

5.
以氧化石墨烯(GO)为吸附剂, 内分泌干扰物双酚A (BPA)为目标污染物, 考察了GO对水中BPA的吸附性能. 结果表明: GO对BPA的最大吸附量(qm)约为87.80 mg·g-1 (25℃), 30 min左右即可达到吸附平衡, 远快于活性碳; 吸附动力学和等温线数据分别符合准二级动力学模型和Langmuir 吸附模型; 在溶液接近中性和低温的条件下有利于吸附的进行, 在溶液中存在电解质的条件下不利于吸附的进行. GO具有优异的循环吸附性能, 经过多次循环使用后依然可以保持良好的吸附能力. GO对BPA的吸附机理主要是由于GO本身的片状结构以及表面的含氧极性基团, 会与BPA之间产生π-π色散作用和氢键作用. 虽然GO对BPA的吸附能力不如石墨烯, 但是相比于石墨烯, GO表面含有大量极性基团, 具有良好的亲水性, 且GO合成方法相对简单, 可批量生产用于工业污水处理. 因此, 在水处理领域, GO有能力成为新型高效的吸附剂.  相似文献   

6.
介孔碳CMK-3对苯酚的吸附动力学和热力学研究   总被引:14,自引:0,他引:14  
研究了介孔碳CMK-3对苯酚的吸附性能, 与传统商用活性碳(CAC)进行了比较, 结果表明, CMK-3比CAC的吸附量大、吸附速率快、达到平衡时间短, 是一种较好的吸附剂. 同时探讨了介孔碳CMK-3对苯酚的吸附热力学和动力学特征. CMK-3对苯酚的吸附行为可用Langmuir和Freundlich等温式进行描述, 相关性都较好, 但更符合Freundlich经验公式. 分别采用模拟一阶反应和二阶反应模型考察了吸附动力学, 并计算了这些动力学模型的速率常数. 模拟二级反应模型和实验数据之间有较好的相关性. 分别计算了热力学参数ΔG0, ΔS0和ΔH0, 结果表明, CMK-3对苯酚的吸附过程是吸热和自发的.  相似文献   

7.
The heats of adsorption of lower alcohols on NaZSM-5 have a stepwise appearance and each step corresponds to the stoichiometric formation of adsorption complexes of Na+ ions with from one to four alcohol molecules. All the adsorption complexes are located at zeolite channel intersections, while the alkyl groups enter these channels. The heats of adsorption of alcohols on NaZSM in the region of the formation of adsorption complexes with cations markedly exceed the heats of adsorption on silicalite, while on the noncationic part of the NaZSM-5 structure, they are identical to the heats of adsorption on silicalite. The mean molar integral adsorption entropies of alcohols are significantly less than the entropy of the liquid. The adsorbed molecules are in a solidlike state. The isotherms for the adsorption of alcohols on NaZSM-5 are completely described by VMOT equations.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 11, pp. 2633–2635, November, 1989.  相似文献   

8.
The kinetics of the isothermal adsorption of ethanol from an aqueous solution onto a hydrophobic zeolite of the NaZSM-5 type in the temperature range 298–333 K was investigated. Specific shape parameters of the adsorption degree curves were determined. The changes in the specific shape parameters of the adsorption degree curves with temperature were determined. The kinetic parameters of ethanol adsorption (Ea,ln A) were determined by the initial rate, the saturation rate and the maximum rate methods as well as from the Johnson, Mehl and Avramy equation. The kinetic model of ethanol adsorption kt=[1−(1−α)1/3] was determined by the “model fitting” method. Ethanol adsorption from aqueous solution onto NaZSM-5 is a kinetically controlled process limited by the rate of three-dimensional movement of the boundary layer of the adsorption phase. A model for the mechanism of ethanol adsorption onto NaZSM-5 is suggested on the basis of the kinetic model. Ethanol molecules in aqueous solution are associated in clusters. The activation energy of the adsorption process corresponds to the energy required for the detachment of an ethanol molecule from a cluster and its adsorption onto the zeolite.  相似文献   

9.
Summary High resolution adsorption (HRADS) with argon and nitrogen at 77 K were performed on large crystals of zeolite ZSM-5 using a novel volumetric device. Multi-step isotherms for both adsorptives could be observed for the first time. The micropore filling was followed by low temperature microcalorimetry. Exothermic heats of adsorption were found to be correlated with steps in the adsorption isotherms. Based on results from atom-atom potential energy calculations (AAP) as well as from independent model building it is shown that 24 kinetic adsorbate molecules can be situated in a ZSM-5 unit cell. Localized adsorption is presented as possible filling mechanisms. Experimental results are reasonably interpreted assuming primary filling of narrow channels and secondary adsorption in the wider channel intersections. At least for nitrogen there is evidence for a transition of fluid-like to a solid-like adsorbate phase.Compared to argon, Henry's constants and the initial isosteric heat of adsorption indicate a stronger adsorption of nitrogen which is thought to be due to additional interactions of the nitrogen quadrupole moment with the zeolite framework.
Sorptionsuntersuchungen zur Hochauflösung von Argon und Stickstoff an großen Kristallen von mikroporösem Zeolit ZSM-5
  相似文献   

10.
Industrial grade multi-walled carbon nanotubes (IG-MWCNTs) are a low-cost substitute for commercially purified multi-walled carbon nanotubes (P-MWCNTs). In this work, IG-MWCNTs were functionalized with tetraethylenepentamine (TEPA) for CO2 capture. The TEPA impregnated IG-MWCNTs were characterized with various experimental methods including N2 adsorption/desorption isotherms, elemental analysis, X-ray diffraction, Fourier transform infrared spectroscopy and thermogravimetric analysis. Both the adsorption isotherms of IG-MWCNTs-n and the isosteric heats of different adsorption capacities were obtained from experiments. TEPA impregnated IG-MWCNTs were also shown to have high CO2 adsorption capacity comparable to that of TEPA impregnated P-MWCNTs. The adsorption capacity of IG-MWCNTs based adsorbents was in the range of 2.145 to 3.088 mmol/g, depending on adsorption temperatures. Having the advantages of low-cost and high adsorption capacity, TEPA impregnated IG-MWCNTs seem to be a promising adsorbent for CO2 capture from flue gas.  相似文献   

11.
Microcrystalline cellulose (MCC) was modified with pyridone derivatives such as pyridone diester (PDE) and pyridone diacid (PDA) by using succinic acid anhydride as a linker. The modified MCCs were characterized by the fourier transform infrared spectroscopy, scanning electron microscopy, thermal gravimetric analysis, elemental analysis and solid state 13C NMR. The adsorption capacities of the modified MCCs to cationic dyes were examined by using methylene blue (MB) as a model dye. It was found that the kinetic adsorption data followed the pseudo-second-order kinetic model, and the adsorption equilibriums were reached less than 10 min. The isothermal adsorption data were fitted with the Langmuir isotherm model very well, from which the maximum adsorption capacities of the MCCs modified with PDE and PDA were determined to be 101.01 and 142.86 mg/g, respectively. Further investigation showed that the modified MCCs were pH-dependent for adsorption of MB in aqueous solutions. The modified MCCs could be used for removal of MB from an aqueous solution at pH 8, and reused by regeneration in an acidic solution. It was tested that the modified MCCs had a high reusability for removal of MB from aqueous solutions, and still maintained high adsorption capacities even after multiple cycles of desorption–adsorption processes. Hence, the MCCs modified with PDE and PDA could be an effective and efficient approach to removal of cationic dyes from aqueous solutions.  相似文献   

12.
The adsorption of propylene and propane on zeolite NaX with and without a saturated (36 wt%) amount of CuCl have been investigated. The single component adsorption isotherms could be well described with a Dual-Site Langmuir model. The dispersion of CuCl results in a decrease of the maximum adsorption capacity of the zeolite for both components. For propylene a strong adsorption via π-complexation with CuCl is present, increasing the adsorption selectivity of the zeolite. The binary mixture (50:50) adsorption was determined via breakthrough/desorption experiments at 318, 358 and 408 K with a partial pressure of the two components between 0.8–54 kPa. For NaX the mixture loading could be well described with the IAS-theory and the single component isotherms, both qualitatively and quantitatively. A transition from an enthalpy controlled adsorption at lower loadings to an entropy affected adsorption at higher loadings was observed. The IAS-theory could only qualitatively describe the trends in the observed mixture adsorption for the CuCl/NaX adsorbent. The dispersion of CuCl in NaX results in a modest improvement of the adsorption selectivity for propylene over propane (from 3–7 to 15–30) but at the expense of a reduced capacity.  相似文献   

13.
The adsorption of a cationic dye, Basic Blue 16 (BB16), by montmorillonitic clay was studied in detail. Changes in the molecular structure during adsorption were analyzed by FTIR spectroscopy. BB16 adsorption onto the clay mainly results from hydrogen bonding between OH and NH2 groups of dye molecules and OH groups of clay and electrostatic interaction between the negatively charged clay surface and cationic dye. The montmorillonitic clay dose had an inverse effect on the adsorption performance, while the highest dye removal was 305 mg/g at pH 3.6. An increase in temperature and dye concentration positively enhanced the adsorption capacity of the montmorillonitic clay. Temperature had no effect on the adsorption at a dye concentration less than 500 mg/L, while dye adsorption was positively enhanced at elevated dye concentrations. Three-parameter equations provided higher better fitting than two-parameter equations while the Freundlich model had the highest correlation coefficient and the lowest error values with experimental data. The BB16 adsorption was well followed by pseudo-second order model and the rate of adsorption process was controlled by surface and intraparticle diffusion. Thermodynamic evaluations revealed that the adsorption process was spontaneous and endothermic, while the randomness increased during adsorption. Experimental results indicate that montmorillonitic clay from Eskisehir is a promising adsorbent for the removal of cationic dye molecules from aqueous solutions.  相似文献   

14.
Experimental measurements of adsorption yield the surface excess. The Gibbs surface excess is the actual or absolute amount of gas contained in the pores less the amount of gas that would be present in the pores in the absence of gas-solid intermolecular forces. Molecular simulation of adsorption yields the absolute amount adsorbed. Comparison of simulated adsorption isotherms and heats of adsorption with experiment requires a conversion from absolute to excess variables. Molecular simulations of adsorption of methane in slit pores at room temperature show large differences between absolute and excess adsorption. The difference between absolute and excess adsorption may be ignored when the pore volume of the adsorbent is negligible compared to the adsorption second virial coefficient (V?B 1s ).  相似文献   

15.
A new calorimeter designed for simultaneous measurements of heats and isotherms of gas adsorption and desorption systems is presented. It consists of a volumetric/manometric gas adsorption instrument, the adsorption vessel of which is placed within a second vessel filled with inert gas. This gas acts as a sensor, as not only its temperature but also its pressure is increased if heat is released from the adsorption vessel via the sensor gas to its thermostated surroundings. Indeed, the time integral of the sensor gas pressure signal turned out to be strongly related to the total heat released from the adsorption vessel.A basic theoretical equation of the measurement procedure is given. Results of numerous calibration measurements are presented. The question of what type and amount of sensor gas should be used to achieve high sensitivity of the instrument is discussed.Two examples of measurements of heats of adsorption and adsorption isotherms are given, namely adsorption of N2 on alumina oxide (CRM-BAM-PM-104) at 77 K and CO2 on zeolite Na13X and wessalite DAY both at 298 K.  相似文献   

16.
The thickness of nanolayers formed by adsorption from dilute and semi-dilute solutions on a solid SiO2 surface has been estimated from adsorption isotherms and atomic force microscopy (AFM) measurements for polystyrene, poly(butyl methacrylate), and their mixtures. The thickness of the adsorption layers depends strongly on the adsorption conditions and is controlled by several features of the adsorbing entities. In a low-concentration regime of adsorption, the length of polymer chains and the nature of their interaction with the substrate are the most important factors controlling the adsorption process. Above the critical concentration C*, macromolecular clusters (aggregates of several overlapping chains) are formed in a solution as a result of polymer chains self-assembly. Therefore, the final adsorption layer thickness is determined mainly by the size of the clusters in this concentrated regime of adsorption. We also demonstrate that in the case of polymer mixtures, the adsorption leads to formation of mosaic structures with alternation of the polymeric components in plane of the substrate and a characteristic domain size of approximately 200 nm for each of the components. AFM study reveals that the adsorbed layers are fractal structures whose fractal dimensions depend on the type of the polymer and the adsorption process. We demonstrate therefore that the structure of nanolayers of polymers and their mixtures on the solid surface can be regulated by variation of the adsorption conditions.  相似文献   

17.
Activated carbon fibers (ACFS) with surface area of 1388 m2/g prepared from paper by chemical activation with KOH has been utilized as the adsorbent for the removal of methy-lene blue from aqueous solution. The experimental data were analyzed by Langmuir and Freundlich models of adsorption. The effects of pH value on the adsorption capacity of ACFS were also investigated. The rates of adsorption were found to conform to the kinetic model of Pseudo-second-order equation with high values of the correlation coefficients (R>0.998). The Langmuir isotherm was found to fit the experimental data better than the Feundlich isotherm over the whole concentration range. Maximum adsorption capacity of 520 mg/g at equilibrium was achieved. It was found that pH played a major role in the adsorption process, higher pH value favored the adsorption of MB.  相似文献   

18.
Graphene-like layered hexagonal boron nitride (g-BN) was prepared and characterized. The performance of using g-BN as an adsorbent for removal of fluoroquinolone antibiotic gatifloxacin (GTF) from aqueous solution was evaluated. g-BN showed an excellent adsorption capability with notable GTF adsorption ratio of more than 90%. Data of equilibrium adsorption of GTF onto g-BN at different temperatures were represented by Langmuir, Freundlich and Tempkin isotherm models, and Langmuir exhibited the best fitting with the maximum adsorption capacity of 88.5 mg·g?1 at 288 K. GTF adsorption was insignificantly affected by solution pH. Competitive role of Na+ and Ca2+ in the solution inhibited the adsorption of GTF and decreased the adsorption capacity a bit. The adsorption process was spontaneous and exothermic. The adsorption was probably governed by π–π interaction between GTF and g-BN, and electrostatic interaction may also exist in the adsorption process.  相似文献   

19.

The adsorption of organic molecules on the surface of a porous polymeric sorbent modified with a mixed cyanuric acid–melamine supramolecular structure is studied. The parameters of thermodynamic adsorption are considered and the contributions from intermolecular interactions to the Helmholtz energy of adsorption are assessed. Analysis of the molar changes in internal energy and adsorption entropy shows that the supramolecular structure formed on the surface could not exhibit dimension effects, indicating there were no cavities. The contributions from nonspecific interactions to the Helmholtz energy of adsorption generally fall, while those of specific interactions increase, indicating an increase in the polarity of the sorbent surface.

  相似文献   

20.
Maghemite incorporated hydroxyapatite (HAP) nanocomposite was prepared by in situ precipitation of the calcium phosphate phase in an iron oxide colloidal suspension. The resultant nanocomposite was characterized by x-ray diffraction, Fourier transform infrared spectrometer, transmission electron microscope, N2 adsorption analysis, and vibrating sample magnetometry. The potential of HAP/γ-Fe2O3 nanocomposite for HA adsorption from aqueous solution was evaluated by batch experiments and adsorption kinetic tests. HA adsorption amount on the adsorbent decreased with increasing solution pH and the presence of KNO3 and alkali-earth metal ions resulted in enhanced HA adsorption. HA adsorption onto HAP/γ-Fe2O3 nanocomposite could be well described by Freundlich and Sips models, while HA adsorption process on the adsorbent obeyed pseudo-second-order kinetics and the adsorption rates decreased with increasing initial HA concentration. This study showed that the HAP/γ-Fe2O3 nanocomposite could be used as an efficient and magnetically separable adsorbent for the removal of HA from aqueous solution. Subsequent studies demonstrated that the HA-loaded HAP/γ-Fe2O3 nanocomposite could be further applied for the highly efficient adsorption of methylene blue (MB) and separated from the medium by a simple magnetic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号