首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
In this contribution we report upon our static and dynamic light scattering experiments to characterize soot particles in flames. We studied sooting laminar premixed flame with acetylene as fuel mixed with air as oxidizer. The air equivalence ratio of the combustion was larger than one. We used a Kaskan type burner with circular geometry and a stabilizing flow of nitrogen around the flame. We focused on the determination of the size of the soot particles in the center of the flame as a function of height above burner. In addition we investigated the influence of the mixing ratio of the gases on the size of the particles. Our results show that static light scattering is better suited than dynamic light scattering for a fast and reliable characterization of soot particles in flames. The latter needs detailed a priori information about the flame to allow the unique determination of sizes from the diffusion measurements. The soot particles grow monotonously with height above burner and with decreasing air equivalence ratio. The aggregates have a fractal dimension lower than two.  相似文献   

2.
The evolution of primary soot particles is studied experimentally and numerically along the centreline of a co-flow laminar diffusion flame. Soot samples from a flame fueled with C2H4 are taken thermophoretically at different heights above the burner (HAB), their size and nano-structure are analysed through TEM. The experimental results suggest that after inception, the nascent soot particles coagulate and coalesce to form larger primary particles (?~?5 to 15 nm). As these primary particles travel along the centreline, they grow mainly due coagulation and condensation and a layer of amorphous hydrocarbons (revealed by HRTEM) forms on their surface. This amorphous layer appears to promote the aggregation of primary particles to form fractal structures. Fast carbonisation of the amorphous layer leads to a graphitic-like shell around the particles. Further graphitization compacts the primary particles, resulting in a decrease of their size. Towards the flame tip the primary particles decrease in size due to rapid oxidation. A detailed population balance model is used to investigate the mechanisms that are important for prediction of primary particle size distributions. Suggestions are made regarding future model development efforts. Simulation results indicate that the primary particle size distributions are very sensitive to the parameterization of the coalescence and particle rounding processes. In contrast, the average primary particle size is less sensitive to these parameters. This demonstrates that achieving good predictions for the average primary particle size does not necessarily mean that the distribution has been accurately predicted.  相似文献   

3.
An advanced fixed sectional aerosol dynamics model describing the evolution of soot particles under simultaneous nucleation, coagulation, surface growth and oxidation processes is successfully implemented to model soot formation in a two-dimensional laminar axisymmetric coflow methane/air diffusion flame. This fixed sectional model takes into account soot aggregate formation and is able to provide soot aggregate and primary particle size distributions. Soot nucleation, surface growth and oxidation steps are based on the model of Fairweather et al. Soot equations are solved simultaneously to ensure convergence. The numerically calculated flame temperature, species concentrations and soot volume fraction are in good agreement with the experimental data in the literature. The structures of soot aggregates are determined by the nucleation, coagulation, surface growth and oxidation processes. The result of the soot aggregate size distribution function shows that the aggregate number density is dominated by small aggregates while the aggregate mass density is generally dominated by aggregates of intermediate size. Parallel computation with the domain decomposition method is employed to speed up the calculation. Three different domain decomposition schemes are discussed and compared. Using 12 processors, a speed-up of almost 10 is achieved which makes it feasible to model soot formation in laminar coflow diffusion flames with detailed chemistry and detailed aerosol dynamics.  相似文献   

4.
火灾烟颗粒的分形结构形状模拟与光散射计算   总被引:3,自引:0,他引:3       下载免费PDF全文
乔利锋  张永明  谢启源  方俊  王进军 《物理学报》2007,56(11):6736-6741
针对火灾烟颗粒的形状特点,提出并建立火灾烟颗粒分形结构凝团的形状模型,并对烟颗粒扫描电镜(SEM)图像进行分析,获取分形结构模型中的单个凝团中基本颗粒个数、凝团分形维数、基本颗粒半径等参数.利用该模型对火灾烟颗粒的形状进行模拟的结果表明,该模型能够较好反映出烟颗粒的形貌特征.利用形状模型对火灾烟颗粒散射进行初步计算表明,在其他参数相同的情况下,相对于同体积的球形颗粒,分形凝团具有前向散射较弱,后向散射较强的特征.  相似文献   

5.
The particle formation in spray flame synthesis (SFS) is a fast and complex process involving many sub-steps that may happen simultaneously. To investigate the mechanisms that typically lead to small aggregated primary particles, a sophisticated technique for in situ measurements in the flame is necessary to provide information about primary particles and the aggregates as well. This work describes the development of an in situ measurement setup using small angle X-ray scattering (SAXS) to investigate the entire particle formation mechanism of zirconia nanoparticles in and above a turbulent spray flame. In preparation for the in situ measurements, a beamline for single crystal diffractometry at Karlsruhe Research Accelerator (KARA) was adapted for low scattering SAXS experiments including optimizations of the optics and measurement protocol. As a result, a significant dependence of scattering intensity was detected as a function of the height above the burner. A detailed analysis of the SAXS data and comparison with TEM images allow insights into the primary particle growth, the development of fractal properties and the aggregation process.  相似文献   

6.
Soot aggregates formed in combustion processes are often described as clusters of carbonaceous particles in random fractal structures. For theoretical studies of the physical properties of such aggregates, they have often been modelled as spherical primary particles in point contact. However, transmission electron microscopy (TEM) images show that the primary particles are more connected than in a single point; there is a certain amount of bridging between the primary particles. Particle sizing using the diagnostic technique laser-induced incandescence (LII) is crucially dependent on the heat conduction rate from the aggregate to the ambient gas, which depends on the amount of bridging. In this work, aggregates with bridging are modelled using overlapping spheres, and it is shown how such aggregates can be built to fulfil specific fractal parameters. Aggregates with and without bridging are constructed numerically, and it is investigated how the bridging influences the heat conduction rate in the free-molecular regime. The calculated heat conduction rates are then used in an LII model to show how LII particle sizing is influenced by different amounts of bridging. For realistic amounts of bridging ( $C_{\rm{ov}}\leq0.25$ ), the primary particle diameters were overestimated by up to 9 % if bridging was not taken into account.  相似文献   

7.
Fumed oxides produced in gas‐phase processes, such as silicas and aluminum oxide, consist of a cluster of aggregated primary particles. The aggregate size of these particles is an important variable in many applications. However, current procedures for measuring particle sizes all assume that the particles have a spherical shape and are thus not truly capable of determining aggregate size. The results of such particle size measurements are consequently called “equivalent spherical diameter” (ESD), but these results vary from method to method. This publication shows that it is feasible to use the number of primary particles per aggregate, rather than the ESD, as a measure for the particle size of clusters of this type. The method is based on dynamic light scattering (photon correlation spectroscopy, PCS), which has proven itself in the analysis of fumed oxides. A numerical simulation based on random, computer‐generated model aggregates is used to modify the well‐known Stokes‐Einstein equation so that the number of primary particles can be determined.  相似文献   

8.
Kim  H.J.  Jeong  J.I.  Park  Y.  Yoon  Y.  Choi  M. 《Journal of nanoparticle research》2003,5(3-4):237-246
Generation and growth of polydisperse non-spherical silica nanoparticles in an oxy-hydrogen co-flow diffusion flame have been simulated for the first time. A complete set of Navier–Stokes equations describing multi-component chemically-reacting fluid flows was first solved considering the detailed H2/O2 chemistry and oxidation/hydrolysis reactions of SiCl4. A recently developed aggregate sectional model (Jeong & Choi, 2001) was employed to solve the dynamics of particles undergoing generation, convection, diffusion, coagulation and coalescence in a spatially two-dimensional flame system. Non-uniform spatial distributions of flame temperatures and non-spherical particle sizes were successfully simulated. Comparison on flame temperature and particle size between the numerical simulation and the experimental data has also been done. Performance of a simple monodisperse model was also studied by comparing with the detailed sectional model.  相似文献   

9.
Soot aggregate formation and size distribution in a laminar ethylene/air coflow diffusion flame is modeled with a PAH-based soot model and an advanced sectional aerosol dynamics model. The mass range of solid soot phase is divided into 35 discrete sections and two variables are solved for in each section. The coagulation kernel of soot aggregates is calculated for the entire Knudsen number regime. Radiation from gaseous species and soot are calculated by a discrete-ordinate method with a statistical narrow-band correlated-k based band model. The discretized sectional soot equations are solved simultaneously to ensure convergence. Parallel computation with the domain decomposition method is used to save computational time. The flame temperature, soot volume fraction, primary particle size and number density are well reproduced. The number of primary particles per aggregate is overpredicted. This discrepancy is presumably associated with the unitary coagulation efficiency assumption in the current sectional model. Along the maximum soot volume fraction pathline, the number-based and mass-based aggregate size distribution functions are found to evolve from unimodal to bimodal and finally to unimodal again. The different shapes of these two aggregate size distribution functions indicate that the total number and mass of aggregates are dominated by aggregates of different sizes. The PAH-soot condensation efficiency γ is found to have a small effect on soot formation when γ is larger than 0.5. However, the soot level and primary particle number density are significantly overpredicted if the PAH-soot condensation process is neglected. Generally, larger γ predicts lower soot level and primary particle number density. Further study on soot aggregate coagulation efficiency should be pursued and more experimental data on soot aggregate structure and size distribution are needed for improving the current sectional soot model and for better understanding the complex soot aggregation phenomenon.  相似文献   

10.
Ahn  K.H.  Jung  C.H.  Choi  M.  Lee  J.S. 《Journal of nanoparticle research》2001,3(2-3):161-170
Growth characteristics of silica particles have been studied experimentally using in situ particle sampling technique from H2/O2/Tetraethylorthosilicate (TEOS) diffusion flame with carefully devised sampling probe. The particle morphology and the size comparisons are made between the particles sampled by the local thermophoretic method from the inside of the flame and by the electrostatic collector sampling method after the dilution sampling probe. The Transmission Electron Microscope (TEM) image processed data of these two sampling techniques are compared with Scanning Mobility Particle Sizer (SMPS) measurement. TEM image analysis of two sampling methods showed a good agreement with SMPS measurement. The effects of flame conditions and TEOS flow rates on silica particle size distributions are also investigated using the new particle dilution sampling probe. It is found that the particle size distribution characteristics and morphology are mostly governed by the coagulation process and sintering process in the flame. As the flame temperature increases, the effect of coalescence or sintering becomes an important particle growth mechanism which reduces the coagulation process. However, if the flame temperature is not high enough to sinter the aggregated particles then the coagulation process is a dominant particle growth mechanism. In a certain flame condition a secondary particle formation is observed which results in a bimodal particle size distribution.  相似文献   

11.
This study shows how the structure of soot particles within the flame changes due to the relative direction of the swirl flow in a small-bore diesel engine in which significant flame–wall interactions cause about half of the flame travelling against the swirl flow while the other half penetrating in the same direction. The thermophoresis-based particle sampling method was used to collect soot from three different in-flame locations including the flame–wall impingement point near the jet axis and the two 60° off-axis locations on the up-swirl and down-swirl side of the wall-interacting jet. The sampled soot particle images were obtained using transmission electron microscopes and the image post-processing was conducted for statistical analysis of size distribution of soot primary particles and aggregates, fractal dimension, and sub-nanoscale parameters such as the carbon layer fringe length, tortuosity, and spacing. The results show that the jet-wall impingement region is dominated by many small immature particles with amorphous internal structure, which is very different to large, fractal-like soot aggregates sampled from 60° downstream location on the down-swirl side. This structure variation suggests that the small immature particles underwent surface growth, coagulation and aggregation as they travelled along the piston-bowl wall. During this soot growth, the particle internal structure exhibits the transformation from amorphous carbon segments to a typical core–shell structure. Compared to those on the down-swirl side, the soot particles sampled on the up-swirl side show much lower number counts and more compact aggregates composed of highly concentrated primary particles. This soot aggregate structure, together with much narrower carbon layer gap, indicates higher level of soot oxidation on the up-swirl side of the jet.  相似文献   

12.
Accurate particle size characterization of aggregated and agglomerated particles is only possible by analysis of photographs. Both the primary particle size and the morphology of the aggregate are important experimental results. Since standard image analysis techniques for particle size analysis usually recognize only single particles, a new programme, called here Sparse Hough Transformation, was developed for the automated recognition of spherical particles within an aggregate. The method is shown to perform well, even for images with many overlapping particles. The structure of the aggregate is analysed using the fractal dimension, determined from the density-density correlation function. Finite size effects, important when dealing with aggregates containing few primary particles, are taken into account by including a cut-off function.  相似文献   

13.
Soot characterization using multiple techniques has been performed in a series of nitrogen-diluted ethylene coflow laminar diffusion flames. Soot aggregate sizes have been measured in two dimensions, as opposed to traditional point measurements, by a newly developed two-dimensional multi-angle light scattering technique where image processing was applied to align images for Guinier analysis. Extinction measurements have also been performed using spectrally resolved line-of-sight attenuation with an imaging spectrometer. Spectrally and spatially resolved extinction measurements have been obtained as well. Combined with previously obtained time-resolved laser-induced incandescence measurements of primary particle diameters, the scattering and absorption components of extinction can be estimated. The so-called dispersion exponent that describes the wavelength dependence of spectral emissivity was determined in two dimensions and found to improve the accuracy of soot color-ratio pyrometry measurements.  相似文献   

14.
Aggregates formed from colloidal particles will vary in shape according to the aggregation regime prevalent. Compact structures are formed when the aggregation is slow, whilst loose tenuous structures are formed when rapid (or diffusion limited) aggregation prevails. These structures can be fractal in nature, that is, there is a relationship between porosity and the number of primary particles making up the aggregate, and is described by the fractal dimension, dF. Fractal dimensions of hematite aggregates have been measured experimentally using the static light scattering technique. Fractal dimensions varied with aggregation regimes; for the rapid aggregation regime, dF was found to be 2.8, whilst for conditions in which aggregation was slow (retardation forces prevail), dF's of 2.3 were measured. For conditions which lead to aggregation in which both diffusion and retardation forces play a part, structures with fractal dimensions such that 2.3 < dF < 2.8 were found. The effects of adsorbed fulvic acid, a naturally occuring organic acid, on the kinetics of hematite aggregation and on the resulting structure of hematite aggregates were also investigated. The study of aggregate structure shows that the fractal dimensions of hematite aggregates which are partially coated with fulvic acid molecules are higher than those obtained with no adsorbed fulvic acid. The scattering exponents obtained from static light scattering experiments of these aggregates range from 2.83 ± 0.08 to 3.42 ± 0.1. The scattering exponents of greater than 3 indicate that the scattering is the result of objects that contains pores which are bounded by surfaces with a fractal structure, and can be related only to surface fractal dimension. The high fractal dimensions are due to restructuring within the aggregates, which only occured at low coverage by the organic acid.  相似文献   

15.
Laser-induced incandescence has been rapidly developed into a powerful diagnostic technique for measurements of soot in many applications. The incandescence intensity generated by laser-heated soot particles at the measurement location suffers the signal trapping effect caused by absorption and scattering by soot particles present between the measurement location and the detector. The signal trapping effect was numerically investigated in soot measurements using both a 2D LII setup and the corresponding point LII setup at detection wavelengths of 400 and 780 nm in a laminar coflow ethylene/air flame. The radiative properties of aggregated soot particles were calculated using the Rayleigh–Debye–Gans polydisperse fractal aggregate theory. The radiative transfer equation in emitting, absorbing, and scattering media was solved using the discrete-ordinates method. The radiation intensity along an arbitrary direction was obtained using the infinitely small weight technique. The contribution of scattering to signal trapping was found to be negligible in atmospheric laminar diffusion flames. When uncorrected LII intensities are used to determine soot particle temperature and the soot volume fraction, the errors are smaller in 2D LII setup where soot particles are excited by a laser sheet. The simple Beer–Lambert exponential attenuation relationship holds in LII applications to axisymmetric flames as long as the effective extinction coefficient is adequately defined.  相似文献   

16.
The possibility of inferring by a non-invasive experimental method the size of primary particles (spherules), which constitute the agglomerated soot generated in an ethylene–air diffusion flame, is investigated. In contrast to the predictions from the Mie theory for isolated spheres, experimental evidence is provided here about the fact that the size of spherules (some tens of nanometers), which stick together to form agglomerates (some hundreds of nanometers), can be recognized from polarization ratio measurements. Validation of the proposed scattering technique is obtained by first performing standard measurements of the primary particle size by SEM analysis of soot samples taken on quartz inserted directly in the flame along the burner axis. Then, the polarization ratio P(θ)≡σHHVV of scattered light is measured at the same locations and for the same flame conditions for different polar scattering angles θ. As major result, evidence is provided of a linear relationship existing between the primary sizes, obtained independently by SEM analysis, and the measurements of the polarization ratio P(90°). Finally, a procedure is reported and applied to retrieve the absolute spherule size from the direct observation of the transition between the power-law and Porod’s scattering regimes, which correspond to the domains of long-range (fractal) and short-range (not fractal) interactions between primary particles, respectively. Received: 24 February 1999 / Final version: 6 December 1999 / Published online: 1 March 2000  相似文献   

17.
The combination of laser-induced incandescence and elastic light scattering has been further developed to allow for a quantitative two-dimensional determination of characteristic properties of soot aggregates, namely radius of gyration R g and number N p of primary particles per aggregate. In demonstrating the principle of the method, we have in a first approach approximated the particle ensemble as monodisperse and used a structure factor with an exponential cut-off function. Nonetheless, experiments performed on a laminar premixed ethene flame demonstrate basically good agreement with observations from literature and data from electron microscopy on thermophoretically obtained samples.  相似文献   

18.
Absorption and scattering of laser-induced incandescence (LII) intensities by soot particles present between the measurement volume and the detector were numerically investigated at detection wavelengths of 400 and 780 nm in a laminar coflow ethylene/air flame. The radiative properties of aggregated soot particles were calculated using the Rayleigh-Debye-Gans polydisperse fractal aggregate theory. The radiative transfer equation in emitting, absorbing, and scattering media was solved using the discrete-ordinates method. The radiation intensity along an arbitrary direction was obtained using the infinitely small weight technique. The effects of absorption and scattering on LII intensities are found to be significant under the conditions of this study, especially at the shorter detection wavelength and when the soot volume fraction is higher. Such a wavelength-dependent signal-trapping effect leads to a lower soot particle temperature estimated from the ratio of uncorrected LII intensities at the two detection wavelengths. The corresponding soot volume fraction derived from the absolute LII intensity technique is overestimated. The Beer-Lambert relationship can be used to describe radiation attenuation in absorbing and scattering media with good accuracy provided the effective extinction coefficient is adequately.  相似文献   

19.
Nanoparticle chain aggregates (NCAs) are often sized and collected using instruments that rely on inertial transport mechanisms. The instruments size segregate aggregates according to the diameter of a sphere with the same aerodynamic behavior in a mechanical force field. A new method of interpreting the aerodynamic diameter of NCAs is described. The method can be used to calculate aggregate surface area or volume. This is useful since inertial instruments are normally calibrated for spheres, and the calibrations cannot be directly used to calculate aggregate properties. A linear relationship between aggregate aerodynamic diameter and primary particle diameter based on published Monte-Carlo drag calculations is derived. The relationship shows that the aggregate aerodynamic diameter is independent of the number of primary particles that compose an aggregate, hence the aggregate mass. The analysis applies to aggregates with low fractal dimension and uniform primary particle diameter. This is often a reasonable approximation for the morphology of nanoparticles generated in high temperature gases. An analogy is the use of the sphere as an approximation for compact particles. The analysis is applied to the collection of NCAs by a low-pressure impactor. Our results indicate the low-pressure impactor collects aggregates with a known surface area per unit volume on each stage. Combustion processes often produce particles with aggregate structure. For diesel exhaust aggregates, the surface area per unit volume calculated by our method was about twice that of spheres with diameter equal to the aerodynamic diameter. Measurements of aggregates collected near a major freeway and at Los Angeles International Airport (LAX) were made for two aerodynamic cutoff diameter diameters (d a,50), 50 and 75 nm. (Aerodynamic cutoff diameter refers to the diameter of particles collected with 50% efficiency on a low-pressure impactor stage.) Near-freeway aggregates were probably primarily a mixture of diesel and internal combustion engine emissions. Aggregates collected at LAX were most likely present as a result of aircraft emissions. In both measurements, the aggregate aerodynamic diameters calculated from the primary particle diameter were fairly close to the stage cutoff diameter. The number of primary particles per aggregate varied one order of magnitude for particles depositing on the same stage. The average aggregate surface area per unit volume was 2.41 × 106 cm−1 and 2.59 × 106 cm−1 (50 nm d a,50) and 1.81 × 106 cm−1 and 1.68 × 106 cm−1 (75 nm d a,50) for near-freeway and LAX measurements, respectively. These preliminary measurements are consistent with values calculated from theory.  相似文献   

20.
This paper describes the applicability of laser-induced incandescence (LII) as a measurement technique for primary soot particle sizes at elevated pressure. A high-pressure burner was constructed that provides stable, laminar, sooting, premixed ethylene/air flames at 1–10 bar. An LII model was set up that includes different heat-conduction sub-models and used an accommodation coefficient of 0.25 for all pressures studied. Based on this model experimental time-resolved LII signals recorded at different positions in the flame were evaluated with respect to the mean particle diameter of a log-normal particle-size distribution. The resulting primary particle sizes were compared to results from TEM images of soot samples that were collected thermophoretically from the high-pressure flame. The LII results are in good agreement with the mean primary particle sizes of a log-normal particle-size distribution obtained from the TEM-data for all pressures, if the LII signals are evaluated with the heat-conduction model of Fuchs combined with an aggregate sub-model that describes the reduced heat conduction of aggregated primary soot particles. The model, called LIISim, is available online via a web interface. PACS 65.80.+n; 78.20.Nv; 42.62.-b; 47.70.Pq  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号