首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A siliceous mesocellular foam-immobilized Ru-TsDPEN complex exhibited excellent catalytic reactivity, enantioselectivity and reusability in the asymmetric transfer hydrogenation of an imine and ketones.  相似文献   

2.
This paper describes the synthesis, characterization and applications of palladium (Pd) nanoparticles supported on siliceous mesocellular foam (MCF). Pd nanoparticles of 2-3 nm and 4-6 nm were used in reactions involving molecular hydrogen (such as hydrogenation of double bonds and reductive amination), transfer hydrogenation of ketones and epoxides, and coupling reactions (such as Heck and Suzuki reactions). They successfully catalyzed all these reactions with excellent yield and selectivity. This heterogeneous catalyst was easily recovered by filtration, and recycled several times without any significant loss in activity and selectivity. The palladium leaching in the reactions was determined to be much less than the FDA-approved limit of 5 ppm. Furthermore, the catalyst can be stored and handled under normal atmospheric conditions. This immobilized catalyst allows for ease of recovery/reuse and minimization of waste generation, which are of great interest in the development of green chemical processes.  相似文献   

3.
γ-Fe(2)O(3) nanoparticles were formed inside the cage-like pores of mesocellular foam (MCF). These magnetic nanoparticles showed a uniform size distribution that could be easily controlled by the MCF pore size, as well as by the hydrocarbon chain length used for MCF surface modification. Throughout the entrapment process, the pore structure and surface area of the MCF remained intact. The resulting magnetic MCF facilitated the immobilization of biocatalysts, homogeneous catalysts, and nanoclusters. Moreover, the MCF allowed for facile catalyst recovery by using a simple magnet. The supported catalysts exhibited excellent catalytic efficiencies that were comparable to their homogeneous counterparts.  相似文献   

4.
Mesocellular carbon foam (MSU-F-C) is functionalized with hollow nanographite by a simple solution-phase method to enhance the intrapenetrating electrical percolation network. The electrical conductivity of the resulting material, denoted as MSU-F-C-G, is increased by a factor of 20.5 compared with the pristine MSU-F-C. Hollow graphite nanoparticles are well-dispersed in mesocellular carbon foam, as confirmed by transmission electron microscopy (TEM), and the d spacing of the (002) planes is 0.343 nm, which is only slightly larger than that of pure graphite (0.335 nm), suggesting a random combination of graphitic and turbostratic stacking. After nanographitic functionalization, the BET surface area and total pore volume decreased from 928 m(2) g(-1) and 1.5 cm(3) g(-1) to 394 m(2) g(-1) and 0.7 cm(3) g(-1), respectively. Thermogravimetric analysis in air shows that the thermal stability of MSU-F-C-G is improved relative to that of MSU-F-C, and the one-step weight loss indicates that the nanographite is homogeneously functionalized on the MSU-F-C particles. When the resulting mesocellular carbon materials are used as electrode materials for an electric double layer capacitor (EDLC), the specific capacitances (C(sp)) of the MSU-F-C and MSU-F-C-G electrodes at 4 mV s(-1) are 109 F g(-1) and 93 F g(-1), respectively. The MSU-F-C-G electrode exhibited a very high area capacitance (C(area), 23.5 μF cm(-2)) compared with that of the MSU-F-C electrode (11.7 μF cm(-2)), which is attributed to the enhanced intraparticle conductivity by the nanographitic functionalization. MSU-F-C-G exhibited high capacity retention (52%) at a very high scan rate of 512 mV s(-1), while only a 23% capacity retention at 512 mV s(-1) was observed in the case of the MSU-F-C electrode. When applied as an anode in a lithium ion battery, a significant increase in the initial efficiency (44%), high reversible discharge capacity (580 mA h g(-1)) in the lower voltage region, and a higher rate capability were observed. The high rate capability of the MSU-F-C-G electrode as charge storage was due to the low resistance derived from the nanographitic functionalization.  相似文献   

5.
Manalpha1-2Man functionalized G(3) and G(4)-PAMAM dendrimers have been synthesized and characterized by MALDI-TOF MS and NMR spectroscopy. Precipitation assays to assess the binding of the dimannose-functionalized dendrimers to Cyanovirin-N, a HIV-inactivating protein that blocks virus-to-cell fusion through high mannose mediated interactions, are presented.  相似文献   

6.
CO2吸附活化的研究进展   总被引:14,自引:0,他引:14  
王建伟  钟顺和 《化学进展》1998,10(4):374-380
本文分析讨论了CO2 在金属催化剂和金属氧化物催化剂上吸附活化的机理及活化吸附态的反应性能, 提出了CO2 作为一种温和氧化剂在化工生产中加以综合利用的有效途径。  相似文献   

7.
Synthesis of unprecedented phosphorus dendrimers from generations 1 to 3 capped with functionalized phosphonium units bearing both P-C and P-N bonds is reported.  相似文献   

8.
We evaluated the ability of CO2 adsorption in functionalized activated carbons granular and monolithic type, obtained by chemical activation of African palm stone with H3PO4 and CaCl2. We made a comparison between two methods of incorporation of nitrogen groups: the impregnation method with NH4OH solution and NH3 gasification. The materials were texturally characterized by N2 adsorption at 77 K, the isotherms shows obtaining microporous materials with surface areas between 545–1425 m2?g?1 and pore volumes between 0.22 to 0.53 cm3?g?1. It was established that with the methodologies used for functionalization is increased content of nitrogen groups, was achieved a higher proportion of such groups when carrying out the process in liquid phase with NH4OH. The incorporation of nitrogen groups in the material generates an increase of up to 65 % in the CO2 adsorption capacity of the MCa2 (Monolith prepared with CaCl2 solution at 2 %) sample. Was reached a maximum adsorption capacity of 344 mgCO2?g?1 in the MCa2FAL (sample MCa2 functionalized with NH4OH solution) sample.  相似文献   

9.
This study investigates the rheological properties of surface-modified nanoparticles-stabilized CO2 foam in porous media for enhanced oil recovery (EOR) applications. Due to the foam pseudo-plastic behavior, the foam apparent viscosity was estimated based on the power law constitutive model. The results show that foam exhibit shear-thinning behavior. The presence of surface-modified silica nanoparticles enhanced the foam bulk apparent viscosity by 15%. Foam apparent viscosity in the capillary porous media was four times higher than that in capillary viscometer, and foam apparent viscosity increased as porous media permeability increases. The high apparent viscosity of the surface-modified nanoparticles-stabilized foam could result in effective fluid diversion and pore blocking processes and enhance their potential applications in heterogeneous reservoir.  相似文献   

10.
杨虎  孙尧俊  平郑骅  龙英才 《化学学报》2000,58(11):1467-1470
采用核磁、红外、XRD研究了FAU硅沸石与吸附的乙胺之间的相互作用,XRD谱显示乙胺的吸入导致沸石晶胞收缩、对称性改变,立方变四方。^2^9SiMASNMR上,FAU硅沸石的单峰分裂成四重峰,同时骨架的红外吸收峰移向低频。这些结果表明,FAU骨架与吸附的乙胺之间存在着强烈的相互作用。  相似文献   

11.
A mesocellular carbon foam (MCF-C) was prepared by nanocasting technology using mesocellular foam (MCF) silica hard template. The obtained carbon sample exhibits bimodal mesopores with narrow pore size distribution, centered at 4.3 and 30.4 nm. The MCF-C was evaluated as positive electrode in lithium/oxygen battery. It showed a higher discharge capacity, about 40% increased capacity compared to several commercial carbon black. The enhanced performance is probably ascribed to their large pore volumes and ultra-large mesoporous structures, which allow more lithium oxide deposit during discharge process.  相似文献   

12.
氨基功能化SBA-16对CO_2的动态吸附特性   总被引:2,自引:0,他引:2  
史晶金  刘亚敏  陈杰  张瑜  施耀 《物理化学学报》2010,26(11):3023-3029
采用浸渍法将四乙烯五胺(TEPA)负载到介孔分子筛SBA-16的孔道内,形成功能化的介孔材料用于CO2的吸附.利用X射线衍射(XRD)、透射电镜(TEM)、氮气物理吸附-脱附和热重分析(TGA)等方法对样品进行了表征.通过动态吸附对不同TEPA浸渍量的SBA-16的CO2吸附性能和再生性能进行研究.结果表明:修饰后的SBA-16仍然保持有序的孔道结构,但样品的孔道有序度降低,比表面积、孔容、平均孔径都减小.样品对CO2的饱和吸附容量和穿透吸附容量随着TEPA浸渍量的增加而增加.60℃时,30%TEPA浸渍量的样品的穿透吸附容量和饱和吸附容量达到最大,分别为0.625和0.973mmol·g-1.在60-80℃,样品的动态吸附性能稳定.经过20次吸附-脱附循环后,样品的饱和吸附容量仅降低了6.45%.采用失活模型对CO2的吸附穿透曲线进行模拟,该模型能够很好地模拟样品对CO2的吸附过程.  相似文献   

13.
Mannose-TEMPO functionalized G4-PAMAM dendrimers with increasing mannose loadings have been synthesized and characterized by MALDI-TOF MS and EPR spectroscopy. Analysis of linebroadening effects in the EPR spectra of these dendrimers allowed us to determine the relative presentation of mannose and TEMPO on the dendrimer surface. Hemagglutination assays and affinity chromatography/EPR experiments to assess the activity of the mannose-TEMPO dendrimers with Concanavalin A are presented.  相似文献   

14.
Spherical siliceous mesocellular foam (MCF) particles with an average particle size of 4.8 μm have been successfully prepared. These spherical particles were tailored in pore sizes and surface areas. They were functionalized with C8 or C18 groups, and applied towards reversed phase high-performance liquid chromatography (HPLC) column separations. Their high surface areas gave rise to very good retention characteristics, as illustrated in the separation of a series of alkylbenzene solutes with increasing chain length. The highly interconnected porous structure and ultralarge pore size of MCF allowed the columns to be used at high flow rates without much loss in column efficiency. The column efficiency and peak symmetry were further improved by eliminating the micropores of the stationary phase. The reversed phase column packed with C18-modified spherical MCF particles provided for excellent separation of different deoxynucleosides, illustrating the broad applicability of these materials due to their controlled pore size.  相似文献   

15.
Palladium nanoparticles immobilized on amino-functionalized mesocellular foam constitute an efficient catalyst for the aerobic oxidation of primary and secondary alcohols to their corresponding carbonyl compounds in high to excellent yields. An exceptionally high TON of 365?000 was reached for the oxidation of 1-phenylethanol under solvent-free reaction conditions. The catalyst can be recycled many times with retained activity as shown by the identical rate curves of the first and fifth runs.  相似文献   

16.
A new series of dendrimers with poly(propylene imine) backbones and 4, 8, 16, or 32 peripheral ferrocenyl-urea groups were prepared and characterized; their voltammetric behavior in DMSO solution was very sensitive to the presence of hydrogenphosphate anions at submillimolar concentration levels.  相似文献   

17.
氨基硅烷修饰的SBA-15用于CO2的吸附   总被引:3,自引:0,他引:3  
王林芳  马磊  王爱琴  刘茜  张涛 《催化学报》2007,28(9):805-810
以3-丙胺基三乙氧基硅烷(APTES)为硅烷化试剂,分别采用后修饰法和一步嫁接法将其嫁接到SBA-15的孔内,形成了功能化的介孔分子筛用于CO2吸附.利用X射线衍射和氮气物理吸附等方法考察了嫁接前后SBA-15的孔结构变化,用静态吸附天平考察了不同温度和不同分压下CO2的吸附行为.实验结果表明,一步嫁接法比后修饰法更有利于实现APTES在SBA-15上的嫁接.与传统的活性炭吸附剂相比,该种介孔分子筛更有利于较低分压下CO2的吸附脱除.  相似文献   

18.
The important role of nanoparticles (NPs) on foam stabilization under harsh geological conditions has been well recognized. In this paper, the Orthogonal Experimental Design (OED) method is adopted to investigate the synergy effects of six parameters, including NP concentration, surfactant concentration, oil concentration, salinity, temperature, and pressure, under five levels in the range of 0–0.2 wt%, 0.1–0.5 wt%, 0–4 wt%, 0–8 wt%, 20–60 °C, and 5.5–9.5 MPa respectively. K values and B values obtained in the OED experiments are employed to show the single parameter effect and the importance of each influential factor on foam static properties. It is concluded that system temperature and pressure, which has the highest B values of 22 mm and 18 mm on foam height results, are the dominant parameters on foamability, whereas temperature with B values of 80% on foam decay rate is the dominant factor on foam stability. It is observed when the system condition is close to the CO2 critical point, the foamability and stability of the NP-stabilized foam are much worse than under conditions far from the critical point. At last, optimal formulation of surfactant and NP concentration is proposed and validated for two geological cases of 45 °C and 55 °C with salinity and oil presence. It is expected the experimental technique, as well as the research results, reported in this paper could help the laboratory screening and formulation optimization of the complex NP-stabilized ScCO2 foam system.  相似文献   

19.
We have constructed a novel electrochemiluminescence (ECL) platform by functionalizing a poly(amidoamine) dendrimer (PAAD) with titanate nanotubes (TiNTs). The PAAD has an open spherical structure that possesses a high density of active groups and thus favors mass transport, while the TiNTs possess excellent electronic conductivity and thus can promote electron transfer on the surface of a glassy carbon electrode (GCE). A study on the intensity and stability of the ECL of luminol on the modified GCE revealed a substantial improvement compared to that of a bare GCE. The effects of the concentration of TiNTs, the pH value of the solution, and of electrochemical parameters on the intensity of the ECL of luminol were studied and resulted in a sensitive ECL sensor for hydrogen peroxide (H2O2) that works in the concentration range of 1 nM to 0.9 μM. The scavenging effect of superoxide dismutase (SOD) on the H2O2 electrode ECL was then exploited to design a biosensor for the determination of SOD in concentrations between 50 and 500 nM.
Figure
The reaction mechanism schematic diagram of luminol ECL on the PAAD/TiNTs modified eledtrode.  相似文献   

20.
We report on the first use of clathrate hydrates as electrolyte additive in the electrochemical reduction of carbon dioxide. Clathrate hydrates allow the enrichment of significantly larger volumes of gas than liquids can usually dissolve. Electrolyte solutions containing 10%mass THF with and without CO2 containing clathrate hydrates were investigated with a copper-foam working electrode. Our results show that at − 1.0 V vs Ag/AgCl the Faradaic efficiency for the production of CO and further reduced carbonaceous products was 80% with clathrates vs 20% with non-clathrate electrolytes of identical chemical composition at nearly equal temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号