首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single-crystalline anatase nanorods and nanoflakes were grown on transparent conducting fluorine-doped tin oxide (FTO) substrates through hydrolysis of titanium tetrachloride (TiCl(4)) followed by heating to 450 °C.  相似文献   

2.
We report the solution-based synthesis of single-crystalline nanorods composed of barium titanate (BaTiO3) and strontium titanate (SrTiO3), which yields well-isolated nanorods with diameters ranging from 5 to 60 nm and lengths reaching up to >10 mum. Electron microscopy and diffraction measurements show that these nanorods are composed of single-crystalline cubic perovskite BaTiO3 and SrTiO3 with a principal axis of the unit cell preferentially aligned along the wire length. These BaTiO3 and SrTiO3 nanorods should provide promising materials for fundamental investigations on nanoscale ferroelectricity, piezoelectricity, and paraelectricity.  相似文献   

3.
The rod-like titanium dioxide (TiO2) particles were synthesized by a simple and rapid microwave-assisted molten-salt method. The X-ray diffraction analysis revealed the phase composition transformation from the anatase phase of original TiO2 nanomaterial to the rutile phase of high crystallinity. Scanning electron microscopy proved the conversion of originally globular particles of original anatase TiO2 sized from 200 to 500 nm into rods with a length of 5–10 μm and a diameter between 0.5 and 2 μm. The electrorheological (ER) measurements performed under steady-state flow as a function of the applied electric field strength and particle concentration showed that suspended rutile rod-like TiO2 particle-based fluid exhibits much higher ER activity than that of original anatase TiO2 material powder. These observations were clearly demonstrated by viewing their dielectric spectra analyses.  相似文献   

4.
5.
Single-crystalline platinum nanorods, monodisperse in diameter, are synthesized through a simple process at room temperature, in cetyltrimethyl ammonium bromide (CTAB) solution. The complexation of the CTA+ surfactant ion with tetrachloroplatinate in the presence of hexanol leads to the formation of a precipitate with a lamellar crystalline structure. The reduction of Pt(II) metal ions to Pt(0) is carried out using gamma radiolysis. Transmission electron microscopy (TEM) observations of the nanoparticles extracted from the solution, three weeks after radiolysis, revealed single-crystalline Pt nanorods, monodisperse in diameter (3-4 nm) and 20-60 nm long. By following the shape of the nanorods at various stages of the growth, it was found that the single-crystalline nanorods grow by coalescence of spherical seeds 3-4 nm in diameter. This suggests an aggregative mechanism similar to that recently observed for silver particles in solution.  相似文献   

6.
A solution-phase route for the preparation of single-crystalline iron phosphide nanorods and nanowires is reported. We have shown that the mixture of trioctylphosphine oxide (TOPO) and trioctylphosphine (TOP), which are commonly used as the solvents for semiconductor nanocrystal synthesis, is not entirely inert. In the current process, TOP, serving as phosphor source, reacts with Fe precursors to form FeP nanostructures with large aspect ratios. In addition, the experimental results show that both TOP and TOPO are necessary for the formation of FeP nanowires and their ratio appears to control the morphology of the produced FeP structures. A possible growth mechanism is discussed.  相似文献   

7.
Gold nanorods (NRs) have received much attention due to their size-dependent surface plasmon-related optical properties. A seed-mediated approach has recently been developed for the synthesis of Au NRs with varying length-to-diameter aspect ratios. With the introduction of silver ions in the growth solution, Au NRs of narrow size distributions can be produced in high yields. Herein we describe an approach for the continuous and selective shortening of Au NRs synthesized by the silver ion-assisted seed-mediated method through oxidation with environmentally benign oxygen at slightly elevated temperatures. UV-visible extinction measurements indicate that the longitudinal surface plasmon band of Au NRs decreases in intensity and blue-shifts as a function of the oxidation time. Transmission electron microscopy (TEM) imaging shows that the length of Au NRs decreases with oxidation and their diameter stays almost constant, which suggests that oxidation starts at the ends of Au NRs. The size distributions of shortened Au NRs are similar to those of starting NRs. Further oxidation transforms Au NRs into nanospheres, which become smaller in diameter and finally completely disappear. It has been found that the oxidation rate of Au NRs can be controlled by temperature and acid concentration. Furthermore, high-resolution TEM studies reveal that Au NRs synthesized by the silver ion-assisted seed-mediated method are single crystalline and they stay single crystalline during oxidation. It is expected that Au NRs of any aspect ratio with narrow size distributions within the limit of that possessed by starting NRs can be produced by this mild oxidation approach.  相似文献   

8.
Large-Scale, solution-phase growth of single-crystalline SnO2 nanorods   总被引:6,自引:0,他引:6  
Small-diameter (<5 nm), single-crystalline SnO2 nanorods were synthesized in solution with a mean length of 17 +/- 4 nm (mean aspect ratio of 4:1) with the [001] direction along the major axis. Two characteristic peaks at 576 and 356 cm-1 in the Raman spectrum further confirmed the small crystal size. The SnO2 nanorods exhibit a red emission at 580 nm.  相似文献   

9.
10.
In this paper, In2O3 nanocrystals were prepared by solution dispersion from bulk indium. In2O3 nanocrystals with an average diameter of 30 nm have a single-crystalline phase and appear as a square or rhombohedral shape, and little spherical particles are also present. In addition, these nanocrystals show strong ultraviolet-blue emission.  相似文献   

11.
二氧化锰纳米棒的固相合成与表征   总被引:2,自引:1,他引:2  
上世纪90年代以来,纳米科技向化学电源领域渗透,科技工作者开始研发纳米级MnO2电极材料,主要包括MnO2纳米粉体的制备[1-8]和将其作为碱锰电池正极材料[1-3]、高能量密度锂电池正极材料以及超级电容器电极材料的性能研究[4-8].  相似文献   

12.
13.
14.
Zhang D  Fu H  Shi L  Pan C  Li Q  Chu Y  Yu W 《Inorganic chemistry》2007,46(7):2446-2451
Polycrystalline CeO2 nanorods 5-10 nm in diameter and 50-150 nm in length were synthesized via ultrasonication using polyethylene glycol (PEG) as a structure-directing agent at room temperature. The properties of the CeO2 nanorods were characterized by TEM, EDS, XRD, XPS, FT-IR, TG, BET, and UV-vis spectroscopy. Various reaction parameters, such as the content of PEG, the molecular weight of PEG, the concentration of KOH, the pH value, and the sonication time, were investigated by a series of control experiments. The content of PEG, the molecular weight of PEG, and the sonication time were confirmed to be the crucial factors determining the formation of one-dimensional CeO2 nanorods. A possible ultrasonic formation mechanism has been suggested to explain the formation of CeO2 nanorods.  相似文献   

15.
The synthesis of Mg(OH)2 one-dimensional (1D) nanostructures was systematically investigated in different solvents at various temperatures with Mg10OH18Cl2·5H2O nanowires as source materials. The results showed that the characters of the products, such as crystal size, shape, and structure, were strongly influenced by the solvent and temperature during the solvothermal process. 1D nanotubes of Mg(OH)2, with 80-300 nm outer diameter, 30-80 nm wall thickness, and several tens of micrometers in length were obtained by choosing bidentate ligand solvents such as ethylenediamine and 1,6-diaminohexane as the reaction solvent. But when using monodentate ligand pyridine as the reaction solvent, the obtained samples showed nanorods morphology. The Mg(OH)2 thus produced was analyzed by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), high-resolution electron microscopy (HRTEM), and selected-area electron diffraction (SAED). The possible growth mechanism of the 1D nanostructure Mg(OH)2 was discussed.  相似文献   

16.
Rose-like crystalline particles of ammonium vanadium sulfate hydroxide (NH4V3(OH)6(SO4)2) were synthesized by a solvothermal route using dimethyl sulfoxide (DMSO)–water as the solvent. Following a thermal decomposition process, rose-like V2O5 micro-architectures were fabricated via the in situ generated single-crystalline nanoparticles. When used as the cathode material in lithium-ion batteries, the rose-like V2O5 micro-architecture exhibited high initial discharge capacity. Sphere-like precursor was also prepared via selecting suitable carboxylic acid. This facile synthesis method would be used to prepare various vanadium oxides with different morphologies as well as other compounds.  相似文献   

17.
Selected-control synthesis of PbO2 and Pb3O4 single-crystalline nanorods   总被引:9,自引:0,他引:9  
Reaction of Pb(OH)3- with ClO- in the presence of surfactant CTAB under conventional conditions resulted in PbO2 nanorods, whereas the reaction under hydrothermal conditions afforded Pb3O4 nanorods, as confirmed by X-ray powder diffraction and transmission electron microscopy (TEM). Selected area electron diffraction (SEAD) and high-resolution TEM (HRTEM) revealed that both PbO2 and Pb3O4 nanorods are single crystalline. For the formation of Pb3O4 nanorods, it is reasonable that PbO2 slowly decomposes to Pb3O4 under hydrothermal conditions, while retaining the morphology of PbO2.  相似文献   

18.
The Gd(OH)3 nanorods with diameters of ca.40-60 nm and lengths of more than 400-550 nm have been prepared by a novelhydrothermal technique.The structural features and chemical composition of the nanorods were investigated by X-ray diffraction(XRD),transmission electron microscopy(TEM),and field emission scanning electron microscope(FESEM),selected areaelectron diffraction(SAED),and high resolution transmission electron microscopy(HRTEM).The possible mechanism for theformation of Gd(OH)3 nanorods was proposed.  相似文献   

19.
20.
Treatment of triphenylphosphine with potassium hydrogen fluoride or hydrogen fluoride-pyridine and diisopropyl azodicarboxylate in acetonitrile or tetrahydrofuran, at room temperature results in the clean formation of difluorotriphenylphosphorane. Analogous results were obtained with other phosphines such as tributylphosphine and tris(dimethylamino) phosphine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号