首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nuclear gamma resonance spectroscopy, also known as M?ssbauer spectroscopy, is a technique that probes transitions between the nuclear ground state and a low-lying nuclear excited state. The nucleus most amenable to M?ssbauer spectroscopy is 57Fe, and 57Fe M?ssbauer spectroscopy provides detailed information about the chemical environment and electronic structure of iron. Iron is by far the most structurally and functionally diverse metal ion in biology, and 57Fe M?ssbauer spectroscopy has played an important role in the elucidation of its biochemistry. In this article, we give a brief introduction to the technique and then focus on two recent exciting developments pertaining to the application of 57Fe M?ssbauer spectroscopy in biochemistry. The first is the use of the rapid freeze-quench method in conjunction with M?ssbauer spectroscopy to monitor changes at the Fe site during a biochemical reaction. This method has allowed for trapping and subsequent detailed spectroscopic characterization of reactive intermediates and thus has provided unique insight into the reaction mechanisms of Fe-containing enzymes. We outline the methodology using two examples: (1) oxygen activation by the non-heme diiron enzymes and (2) oxygen activation by taurine:alpha-ketoglutarate dioxygenase (TauD). The second development concerns the calculation of M?ssbauer parameters using density functional theory (DFT) methods. By using the example of TauD, we show that comparison of experimental M?ssbauer parameters with those obtained from calculations on model systems can be used to provide insight into the structure of a reaction intermediate.  相似文献   

2.
High‐spin iron species with bridging hydrides have been detected in species trapped during nitrogenase catalysis, but there are few general methods of evaluating Fe?H bonds in high‐spin multinuclear iron systems. An 57Fe nuclear resonance vibrational spectroscopy (NRVS) study on an Fe(μ‐H)2Fe model complex reveals Fe?H stretching vibrations for bridging hydrides at frequencies greater than 1200 cm?1. These isotope‐sensitive vibrational bands are not evident in infrared (IR) spectra, showing the power of NRVS for identifying hydrides in this high‐spin iron system. Complementary density functional theory (DFT) calculations elucidate the normal modes of the rhomboidal iron hydride core.  相似文献   

3.
Three series of ferrocenes, derived from aminoferrocene Fc-NH2 and 1,1'-diaminoferrocene fc(NH2)2, were studied by 57Fe NMR spectroscopy. A marked decrease in 57Fe magnetic nuclear shielding with respect to ferrocene is observed if the nitrogen atom becomes part of a pi-acceptor linked to one or both cyclopentadienyl rings. In contrast, pi-donor properties of the amino group(s) affect delta57Fe to a much smaller extent. In the case of the fairly rigid structures of 1,3-diaza-2-element-[3]ferrocenophanes, a significant increase of 57Fe nuclear magnetic shielding is observed, in contrast to the corresponding [n]ferrocenophanes with n > 3. Structures of numerous of the ferrocene derivatives have been optimized for the gas phase by calculations (B3LYP/6-311 + G(d,p) level of theory), and 57Fe nuclear magnetic shieldings were calculated using these geometries. There is reasonable agreement in the trends for experimental and calculated data.  相似文献   

4.
Nitrogenase catalyzes a reaction critical for life, the reduction of N(2) to 2NH(3), yet we still know relatively little about its catalytic mechanism. We have used the synchrotron technique of (57)Fe nuclear resonance vibrational spectroscopy (NRVS) to study the dynamics of the Fe-S clusters in this enzyme. The catalytic site FeMo-cofactor exhibits a strong signal near 190 cm(-)(1), where conventional Fe-S clusters have weak NRVS. This intensity is ascribed to cluster breathing modes whose frequency is raised by an interstitial atom. A variety of Fe-S stretching modes are also observed between 250 and 400 cm(-)(1). This work is the first spectroscopic information about the vibrational modes of the intact nitrogenase FeMo-cofactor and P-cluster.  相似文献   

5.
We have used (57)Fe nuclear resonance vibrational spectroscopy (NRVS) to study the Fe(S(cys))(4) site in reduced and oxidized rubredoxin (Rd) from Pyrococcus furiosus (Pf). The oxidized form has also been investigated by resonance Raman spectroscopy. In the oxidized Rd NRVS, strong asymmetric Fe-S stretching modes are observed between 355 and 375 cm(-1); upon reduction these modes shift to 300-320 cm(-1). This is the first observation of Fe-S stretching modes in a reduced Rd. The peak in S-Fe-S bend mode intensity is at approximately 150 cm(-1) for the oxidized protein and only slightly lower in the reduced case. A third band occurs near 70 cm(-1) for both samples; this is assigned primarily as a collective motion of entire cysteine residues with respect to the central Fe. The (57)Fe partial vibrational density of states (PVDOS) were interpreted by normal mode analysis with optimization of Urey-Bradley force fields. The three main bands were qualitatively reproduced using a D(2)(d) Fe(SC)(4) model. A C(1) Fe(SCC)(4) model based on crystallographic coordinates was then used to simulate the splitting of the asymmetric stretching band into at least 3 components. Finally, a model employing complete cysteines and 2 additional neighboring atoms was used to reproduce the detailed structure of the PVDOS in the Fe-S stretch region. These results confirm the delocalization of the dynamic properties of the redox-active Fe site. Depending on the molecular model employed, the force constant K(Fe-S) for Fe-S stretching modes ranged from 1.24 to 1.32 mdyn/A. K(Fe-S) is clearly diminished in reduced Rd; values from approximately 0.89 to 1.00 mdyn/A were derived from different models. In contrast, in the final models the force constants for S-Fe-S bending motion, H(S-Fe-S), were 0.18 mdyn/A for oxidized Rd and 0.15 mdyn/A for reduced Rd. The NRVS technique demonstrates great promise for the observation and quantitative interpretation of the dynamical properties of Fe-S proteins.  相似文献   

6.
[NEt(4)][FeCl(4)], [P(C(6)H(5))(4)][FeCl(4)], and [NEt(4)](2)[Fe(2)S(2)Cl(4)] have been examined using (57)Fe nuclear resonance vibrational spectroscopy (NRVS). These complexes serve as simple models for Fe-S clusters in metalloproteins. The (57)Fe partial vibrational density of states (PVDOS) spectra were interpreted by computation of the normal modes assuming Urey-Bradley force fields, using additional information from infrared and Raman spectra. Previously published force constants were used as initial values; the new constraints from NRVS frequencies and amplitudes were then used to refine the force field parameters in a nonlinear least-squares analysis. The normal-mode calculations were able to quantitatively reproduce both the frequencies and the amplitudes of the intramolecular-mode (57)Fe PVDOS. The optimized force constants for bending, stretching, and nonbonded interactions agree well with previously reported values. In addition, the NRVS technique also allowed clear observation of anion-cation lattice modes below 100 cm(-1) that are nontrivial to observe by conventional spectroscopies. These features were successfully reproduced, either by assuming whole-body motions of point-mass anions and cations or by simulations using all of the atoms in the unit cell. The advantages of a combined NRVS, Raman, and IR approach to characterization of Fe-S complexes are discussed.  相似文献   

7.
Since its observation in 1985, nuclear resonance scattering of synchrotron radiation has become an excellent tool to study hyperfine interactions as well as dynamical effects in solids. It has proven to be a complementary method to Mössbauer spectroscopy. Nuclear resonance scattering combines the advantages of both local probe experiments and scattering techniques. It gives valuable information as well on electronic and magnetic structures and on dynamics in solids. Experiments benefit from the high beam quality of third-generation synchrotron radiation sources, as the small beam size and divergence. Besides the standard isotope 57Fe, other Mössbauer isotopes have become more important in nuclear resonant scattering of synchrotron radiation. This article concentrates on the 151Eu isotope.  相似文献   

8.
Nuclear inelastic resonant scattering of synchrotron radiation was applied to the study solutions of 57Fe complexes. In order to reveal different inelastic contributions solutions of two different 57Fe complexes of different molecular dimensions with solvents of substantially different viscosities were studied. We argue that the only former experiment available in the literature overestimates the role of the diffusivity in affecting the spectrum. The first direct observation of an intramolecular vibrational transition assisting the nuclear resonance absorption in a liquid is reported.  相似文献   

9.
Understanding the catalytic process of the heterolytic splitting and formation of molecular hydrogen is one of the key topics for the development of a future hydrogen economy. With an interest in elucidating the enzymatic mechanism of the [Fe(2)(S(2)C(2)H(4)NH)(CN)(2)(CO)(2)(μ-CO)] active center uniquely found in [FeFe]hydrogenases, we present a detailed spectroscopic and theoretical analysis of its inorganic model [Fe(2)(S(2)X)(CO)(3)(dppv)(PMe(3))](+) [dppv = cis-1,2-bis(diphenylphosphino)ethylene] in two forms with S(2)X = ethanedithiolate (1edt) and azadithiolate (1adt). These complexes represent models for the oxidized mixed-valent Fe(I)Fe(II) state analogous to the active oxidized "H(ox)" state of the native H-cluster. For both complexes, the (31)P hyperfine interactions were determined by pulse electron paramagnetic resonance and electron nuclear double resonance (ENDOR) methods. For 1edt, the (57)Fe parameters were measured by electron spin-echo envelope modulation and M?ssbauer spectroscopy, while for 1adt, (14)N and selected (1)H couplings could be obtained by ENDOR and hyperfine sublevel correlation spectroscopy. The spin density was found to be predominantly localized on the Fe(dppv) site. This spin distribution is different from that of the H-cluster, where both the spin and charge densities are delocalized over the two Fe centers. This difference is attributed to the influence of the "native" cubane subcluster that is lacking in the inorganic models. The degree and character of the unpaired spin delocalization was found to vary from 1edt, with an abiological dithiolate, to 1adt, which features the authentic cofactor. For 1adt, we find two (14)N signals, which are indicative for two possible isomers of the azadithiolate, demonstrating its high flexibility. All interaction parameters were also evaluated through density functional theory calculations at various levels.  相似文献   

10.
Chemical consequences of electron capture in the 57Co nucleus in quenched eutectic melts of salts (nitrates, thiocyanates, and carbamides) have been investigated using nuclear gamma resonance spectroscopy. The posteffects of the nuclear transformation are interpreted in terms of the scavenger competition model.  相似文献   

11.
The Fe vibrational density of states (VDOS) has been determined for the heme proteins deoxymyoglobin, metmyoglobin, and cytochrome f in the oxidized and reduced states, using nuclear resonance vibrational spectroscopy (NRVS). For cytochrome f in particular, the NRVS spectrum is compared with multiwavelength resonance Raman spectra to identify those Raman modes with significant Fe displacement. Modes not seen by Raman due to optical selection rules appear in the NRVS spectrum. The mean Fe force constant extracted from the VDOS illustrates how Fe dynamics varies among these four monoheme proteins, and is correlated with oxidation and spin state trends seen in model heme compounds. The protein's contribution to Fe motion is dominant at low frequencies, where coupling to the backbone tightly constrains Fe displacements in cytochrome f, in contrast to enhanced heme flexibility in myoglobin.  相似文献   

12.
The vibrational spectrum of an η(1),η(1)-1,2-peroxodiiron(III) complex was measured by nuclear resonance vibrational spectroscopy and fit using an empirical force field analysis. Isotopic (18)O(2) labelling studies revealed a feature involving motion of the {Fe(2)(O(2))}(4+) core that was not previously observed by resonance Raman spectroscopy.  相似文献   

13.
NifB-co, an Fe-S cluster produced by the enzyme NifB, is an intermediate on the biosynthetic pathway to the iron molybdenum cofactor (FeMo-co) of nitrogenase. We have used Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy together with (57)Fe nuclear resonance vibrational spectroscopy (NRVS) to probe the structure of NifB-co while bound to the NifX protein from Azotobacter vinelandii. The spectra have been interpreted in part by comparison with data for the completed FeMo-co attached to the NafY carrier protein: the NafY:FeMo-co complex. EXAFS analysis of the NifX:NifB-co complex yields an average Fe-S distance of 2.26 A and average Fe-Fe distances of 2.66 and 3.74 A. Search profile analyses reveal the presence of a single Fe-X (X = C, N, or O) interaction at 2.04 A, compared to a 2.00 A Fe-X interaction found in the NafY:FeMo-co EXAFS. This suggests that the interstitial light atom (X) proposed to be present in FeMo-co has already inserted at the NifB-co stage of biosynthesis. The NRVS exhibits strong bands from Fe-S stretching modes peaking around 270, 315, 385, and 408 cm(-1). Additional intensity at approximately 185-200 cm(-1) is interpreted as a set of cluster "breathing" modes similar to those seen for the FeMo-cofactor. The strength and location of these modes also suggest that the FeMo-co interstitial light atom seen in the crystal structure is already in place in NifB-co. Both the EXAFS and NRVS data for NifX:NifB-co are best simulated using a Fe 6S 9X trigonal prism structure analogous to the 6Fe core of FeMo-co, although a 7Fe structure made by capping one trigonal 3S terminus with Fe cannot be ruled out. The results are consistent with the conclusion that the interstitial light atom is already present at an early stage in FeMo-co biosynthesis prior to the incorporation of Mo and R-homocitrate.  相似文献   

14.
Recent developments in the understanding of the biosynthesis of the active site of the nitrogenase enzyme, the structure of the iron centre of [Fe]-hydrogenase and the structure and biomimetic chemistry of the [FeFe] hydrogenase H-cluster as deduced by application of X-ray spectroscopy are reviewed. The techniques central to this work include X-ray absorption spectroscopy either in the form of extended X-ray absorption fine structure (EXAFS), X-ray absorption near-edge structure (XANES) and nuclear resonant vibrational spectroscopy (NRVS). Examples of the advances in the understanding of the chemistry of the system through integration of a range of spectroscopic and computational techniques with X-ray spectroscopy are highlighted. The critical role played by ab initio calculation of structural and spectroscopic properties of transition-metal compounds using density functional theory (DFT) is illustrated both by the calculation of nuclear resonance vibrational spectroscopy (NRVS) spectra and the structures and spectra of intermediates through the catalytic reactions of hydrogenase model compounds.  相似文献   

15.
We have used (57)Fe nuclear resonance vibrational spectroscopy (NRVS) to study the iron site in the iron-sulfur cluster-free hydrogenase Hmd from the methanogenic archaeon Methanothermobacter marburgensis. The spectra have been interpreted by comparison with a cis-(CO)2-ligated Fe model compound, Fe(S2C2H4)(CO)2(PMe3)2, as well as by normal mode simulations of plausible active site structures. For this model complex, normal mode analyses both from an optimized Urey-Bradley force field and from complementary density functional theory (DFT) calculations produced consistent results. For Hmd, previous IR spectroscopic studies found strong CO stretching modes at 1944 and 2011 cm(-1), interpreted as evidence for cis-Fe(CO)2 ligation. The NRVS data provide further insight into the dynamics of the Fe site, revealing Fe-CO stretch and Fe-CO bend modes at 494, 562, 590, and 648 cm(-1), consistent with the proposed cis-Fe(CO)2 ligation. The NRVS also reveals a band assigned to Fe-S stretching motion at approximately 311 cm(-1) and another reproducible feature at approximately 380 cm(-1). The (57)Fe partial vibrational densities of states (PVDOS) for Hmd can be reasonably well simulated by a normal mode analysis based on a Urey-Bradley force field for a five-coordinate cis-(CO)2-ligated Fe site with additional cysteine, water, and pyridone cofactor ligands. A "truncated" model without a water ligand can also be used to match the NRVS data. A final interpretation of the Hmd NRVS data, including DFT analysis, awaits a three-dimensional structure for the active site.  相似文献   

16.
In this work, we report the synthesis and a study on the degree of electronic delocalization in the asymmetric mixed valence complexes [CpFe(C(8)H(6))Fe(C(8)H(7))](+), 3a(+), and [CpCo(C(8)H(6))Fe(C(8)H(7))](+), 3b(+), (Cp = C(5)Me(5), C(8)H(6) = pentalenyde, C(8)H(7) = hydropentalenyde, and = ((3,5(CF(3))(2)C(6)H(3))(4)B(-))). Electrochemical methods, (57)Fe M?ssbauer spectroscopy, electronic spectroscopy, and electron paramagnetic resonance were used for this purpose. Although the anti conformation of the complexes precludes any metal-metal interaction, all the techniques employed show that 3a(+) is a electronic delocalized system, while 3b(+) behaves as two individual metallic centers with localized electron density.  相似文献   

17.
Hydrogenases are complex metalloenzymes that catalyze the reversible splitting of molecular hydrogen into protons and electrons essentially without overpotential. The NAD+-reducing soluble hydrogenase (SH) from Ralstonia eutropha is capable of H2 conversion even in the presence of usually toxic dioxygen. The molecular details of the underlying reactions are largely unknown, mainly because of limited knowledge of the structure and function of the various metal cofactors present in the enzyme. Here, all iron-containing cofactors of the SH were investigated by 57Fe specific nuclear resonance vibrational spectroscopy (NRVS). Our data provide experimental evidence for one [2Fe2S] center and four [4Fe4S] clusters, which is consistent with the amino acid sequence composition. Only the [2Fe2S] cluster and one of the four [4Fe4S] clusters were reduced upon incubation of the SH with NADH. This finding explains the discrepancy between the large number of FeS clusters and the small amount of FeS cluster-related signals as detected by electron paramagnetic resonance spectroscopic analysis of several NAD+-reducing hydrogenases. For the first time, Fe–CO and Fe–CN modes derived from the [NiFe] active site could be distinguished by NRVS through selective 13C labeling of the CO ligand. This strategy also revealed the molecular coordinates that dominate the individual Fe–CO modes. The present approach explores the complex vibrational signature of the Fe–S clusters and the hydrogenase active site, thereby showing that NRVS represents a powerful tool for the elucidation of complex biocatalysts containing multiple cofactors.  相似文献   

18.
The measured Fe vibrational density of states in deoxy-myoglobin, obtained from nuclear resonance vibrational spectroscopy, is compared to results from a normal-mode analysis using an all-atom empirical potential. Substantial disagreement reveals that for this one atom, the empirical potential does not accurately describe the actual forces. A Green function technique is developed to calculate the iron vibrational spectrum of deoxy-myoglobin by coupling the independently calculated heme and globin normal modes; nonbonded interactions between the heme molecule and the protein are essential for a good fit to the measurements. A projection of the eigenvectors from this potential onto the displacements induced by binding of CO demonstrates that normal modes over a broad range centered around 50-150 cm(-1) may drive the ligand-induced structural changes.  相似文献   

19.
Since it is often necessary or desirable to determine the structures of compounds containing nitrogen directly via the nitrogen atoms, the nuclear quadrupole resonance (NQR) and the nuclear magnetic resonance (NMR) as well as the photoelectron and the Auger-electron spectroscopy (ESCA) of nitrogen are becoming increasingly important. A comparative review of these three methods on the basis of measurement effect, information obtainable, applications, and limitations forms the subject of this article.  相似文献   

20.
MnxZn1−xFe2O4 (x = 0.05…0.9) nanoparticles prepared via sol–gel hydrothermal process were investigated by X-ray powder diffractometry (XRPD), transmission electron microscopy (TEM), 57Fe Mössbauer spectroscopy (MS), electron paramagnetic resonance spectroscopy (EPR), X-ray absorption near edge structure spectroscopy (XANES) and magnetic hysteresis measurements. XRPD measurements revealed a non-monotonic dependence of the cubic lattice parameter on the Mn concentration, which is interpreted as being the result of a corresponding variation in the inversion degree (concentration of Fe ions on the occupied tetrahedral lattice sites) of the studied spinels. XANES measurements indicated that the average oxidation state of Mn ions decreases with the applied Mn concentration, in contrast with Fe ions that were found to be exclusively in the 3+ oxidation state by MS measurements. EPR spectra recorded as a function of temperature enabled the determination of the characteristic anisotropy energy barrier of the superparamagnetic particles, and contributed to the clarification of peculiarities of the corresponding 57Fe Mössbauer spectra. On the basis of the observed results the interdependences among the sample stoichiometry, the cubic cell parameter, the particle size, the inversion degree, the magnetic ordering temperature and the effective magnetic anisotropy are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号