首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A multi-pumping flow system (MPFS) for the spectrophotometric determination, solid-phase extraction (SPE) and speciation analysis of iron at a wide range of concentrations is proposed. Chelating (iminodiacetic groups) disks have been used as solid phase. A solenoid valve allows the deviation of the flow towards the chelating disk to carry out SPE procedures. The possibility to combine solenoid micro-pumps with solenoid valves increases the versatility of MPFS. Ammonium thiocyanate has been chosen as chromogenic reagent for Fe(III). The determination of total iron is achieved by the on-line oxidation of iron(II) to iron(III) with a hydrogen peroxide stream.

A mass calibration was run within the range 0.01–1.75 μg. The detection limit (3sb/S) was 0.01 μg. The repeatability (R.S.D.) was estimated as 1.6% after 10-fold processing of 2 ml of 0.5 mg l−1 Fe solution. When SPE was not required, two linear calibration graph within the ranges 0.05–10 and 0.2–15 mg l−1 for the determination of iron(III) and total iron, respectively, were obtained. The proposed procedure was validated by analysis of certified reference materials. The analytical features were compared with those obtained exploiting MSFIA.  相似文献   


2.
An automated multi-pumping flow system is proposed for the simultaneous chemiluminometric determination of benserazide and levodopa using multivariate calibration methods. The developed methodology is based on chemiluminescence (CL) emission generated by the reaction of benserazide with luminol, and on a concurrent inhibiting effect of levodopa on this reaction. A multi-pumping flow system comprising multiple solenoid micro-pumps as the only active components was developed to implement a stopped-flow approach for signal acquisition and processing. Artificial neural networks were used to establish a relationship between the CL emission profile and the concentration of both drugs. The concentration values used to establish the experimental calibration samples were varied between 5 and 30 mg l(-1) for levodopa and between 2.5 and 20 mg l(-1) for benserazide. The proposed method was successfully applied to the simultaneous determination of levodopa and benserazide in pharmaceutical formulations combining both drugs.  相似文献   

3.
《Analytical letters》2012,45(12):2074-2084
A flow-based methodology for the spectrophotometric determination of ciprofloxacin and norfloxacin, based on the oxidation with N-bromosuccinimide in acidic medium, was developed. The proposed procedure was implemented in a multi-pumping flow system, which provided excellent mixing conditions due to the pulsed flow produced by solenoid micro-pumps actuation, resulting on a sensitive, simple, fast, and versatile analytical method. Linear calibration plots were obtained for ciprofloxacin and norfloxacin concentrations ranging from 5 to 70 mg L?1 with an R.S.D < 2.2% (n = 10). Detection limits (3σ) were 0.27 mg L?1 and 0.99 mg L?1 for norfloxacin and ciprofloxacin, respectively.  相似文献   

4.
Solutions propelling devices are fundamental components of a flow-based analytical manifold. In this work different manifold configurations were implemented to evaluate the performance of multiple piezoelectric micro-pumps used as solutions insertion and propulsion devices. The micro-pumps are piezo-actuated micro-diaphragm pumps with passive check valves characterised by a small compact size and low power demands, and are able to produce reproducible flow rates of up to 4 mL min−1. The flow rate is controlled by the frequency of the piezoelectric actuator (up to 20 Hz). As an additional feature, piezoelectric micro-pumps actuation generates a pulsed flowing stream that ensures a faster sample/reagent mixing contributing to improved reaction development.

The developed flow approach was assessed in the spectrophotometric determination of gabapentin in pharmaceutical preparations upon reaction with 1,2-naphthoquinone-4-sulfonate in alkaline medium. Distinct flow manifold configurations were designed for achievement of different solutions management. Linear calibrations plots for gabapentin concentrations of up to 150 mg L−1, with relative standard deviations of less than 1.50% (n = 10) and a sample throughput of about 28 determinations per hour, were obtained.  相似文献   


5.
In this work a simple, fast and fully automated analytical methodology for the spectrophotometric determination of phenylglyoxylic acid is proposed. Phenylglyoxylic acid is a metabolite of styrene that is excreted in urine, being used as an indicator of styrene occupational exposure. The developed procedure was based on the phenylglyoxylic acid ability to inhibit the formation of the peroxovanadium cation produced by the reaction between vanadate and H2O2. The analytical process was implemented in a multi-pumping flow system that employs multiple solenoid actuated micro-pumps as the only active components. This enabled the reproducible insertion and efficient mixing of low volumes of sample and reagents as well as the transportation of the sample zone towards detection. Thus an easily controlled, low cost, compact and reliable analytical system was implemented. A linear working range for phenylglyoxylic acid concentrations up to 700?mg?L?1 (r 2?=?0.995, n?=?7), was obtained, with a detection limit of 37?mg?L?1. The system handles about 43 determinations per hour yielding precise results (relative standard deviation?<?5%, n?=?10). The developed methodology was applied to the determination of phenylglyoxylic acid in urine samples and the obtained results were in agreement with those furnished by the comparison method with relative percentage deviations lower than 6.6%.  相似文献   

6.
A multi-pumping flow system for the chemiluminometric determination of the hypoglycaemic drug metformin was implemented. The developed methodology was based on the metformin-induced inhibition (metformin acts as a Cu(II) scavenger) of the catalytic effect of Cu(II) ions on the chemiluminescent reaction between luminol and hydrogen peroxide. The flow manifold configuration was based on the utilisation of multiple solenoid-actuated micro-pumps that were simultaneously accountable for sample/reagent introduction and reaction zone formation/propulsion, thus resulting in a fully automated, simple and highly selective multi-pumping flow system. A versatile sample manipulation allowed the establishment of distinct sampling strategies with low reagent consumption. The characteristic pulsed flow ensured an effective sample/reagent mixing leading to a better and faster reaction zone homogenisation and thus improved analytical signals. Linear calibration plots were obtained for metformin hydrochloride concentrations ranging from 5 to 15 mg L–1 with a relative standard deviation lower than 2.0% (n=5). Detection limit was 0.94 mg L–1, and the sampling rate was about 95 determinations per hour. The developed methodology was applied to the analysis of pharmaceutical formulations and the obtained results were in agreement with those furnished by the reference method with relative percentage deviations of lower than 1.5%.  相似文献   

7.
Lima JL  Santos JL  Dias AC  Ribeiro MF  Zagatto EA 《Talanta》2004,64(5):1091-1098
Multi-pumping flow systems (MPFS) are one of the most recent developments in terms of the design, conception and implementation of continuous flow methodologies, for sample and reagent handling and for the automation of analytical procedures. Based on the utilisation of multiple solenoid micro-pumps they enable the configuring of fully automated and easily controlled and operated analytical systems since all the fundamental operations involved in carrying out a sample analysis, including sample insertion, reagent addition and signal measurement could be carried out by the same manifold component, reducing the number of system parts and minimising its control or the occurrence of mal-functions. On the other hand, micro-pumps actuation produce a pulsed flow characterised by a chaotic movement of the solutions, which contributes to a fast sample/reagent homogenisation with low axial dispersion yielding improved analytical signals. The combination of such advantageous features resulted in simple, compact, versatile, fast, low-cost analytical procedures, exhibiting low reagent and low sample consumption, reducing the production of undesirable wastes and minimising operator intervention.  相似文献   

8.
In this work new strategies were exploited to implement multi-pumping flow systems relying on the utilisation of multiple devices that act simultaneously as sample-insertion, reagent-introduction, and solution-propelling units. The solenoid micro-pumps that were initially used as the only active elements of multi-pumping systems, and which were able to produce pulses of 3 to 25 microL, were replaced by syringe pumps with the aim of producing pulses between 1 and 4 microL. The performance of the developed flow system was assessed by using distinct sample-insertion strategies like single sample volume, merging zones, and binary sampling in the spectrophotometric determination of isoniazid in pharmaceutical formulations upon reaction with 1,2-naphthoquinone-4-sulfonate, in alkaline medium. The results obtained showed that enhanced sample/reagent mixing could be obtained with binary sampling and by using a 1 microL per step pump, even in limited dispersion conditions. Moreover, syringe pumps produce very reproducible flowing streams and are easily manipulated and controlled by a computer program, which is greatly simplified since they are the only active manifold component. Linear calibration plots up to 18.0 microg mL(-1), with a relative standard deviation of less than 1.48% (n=10) and a throughput of about 20 samples per hour, were obtained.  相似文献   

9.
An improved flow-based procedure is proposed for turbidimetric sulphate determination in waters. The flow system was designed with solenoid micro-pumps in order to improve mixing conditions and minimize reagent consumption as well as waste generation. Stable baselines were observed in view of the pulsed flow characteristic of the systems designed with solenoid micro-pumps, thus making the use of washing solutions unnecessary. The nucleation process was improved by stopping the flow prior to the measurement, thus avoiding the need of sulphate addition. When a 1-cm optical path flow cell was employed, linear response was achieved within 20–200 mg L−1, described by the equation S = −0.0767 + 0.00438C (mg L−1), r = 0.999. The detection limit was estimated as 3 mg L−1 at the 99.7% confidence level and the coefficient of variation was 2.4% (n = 20). The sampling rate was estimated as 33 determinations per hour. A long pathlength (100-cm) flow cell based on a liquid core waveguide was exploited to increase sensitivity in turbidimetry. Baseline drifts were avoided by a periodical washing step with EDTA in alkaline medium. Linear response was observed within 7–16 mg L−1, described by the equation S = −0.865 + 0.132C (mg L−1), r = 0.999. The detection limit was estimated as 150 μg L−1 at the 99.7% confidence level and the coefficient of variation was 3.0% (n = 20). The sampling rate was estimated as 25 determinations per hour. The results obtained for freshwater and rain water samples were in agreement with those achieved by batch turbidimetry at the 95% confidence level.  相似文献   

10.
It has been developed an automatic stop-flow procedure for sequential photometric determination of anionic and cationic surfactants in a same sample of water. The flow system was based on multicommutation process that was designed employing two solenoid micro-pumps and six solenoid pinch valves, which under microcomputer control carry out fluid propelling and reagent solutions handling. A homemade photometer using a photodiode as detector and two light emitting diodes (LEDs) with emission at 470 nm (blue) and 650 nm (red) as radiation sources, which was tailored to allow the determination of anionic and cationic surfactants in waters. The procedure for anionic surfactant determination was based on the substitution reaction of methyl orange (MO) by the anionic surfactant sodium dodecylbenzene sulfonate (DBS) to form an ion-pair with the cetyl pyridine chloride (CPC). Features such as a linear response ranging from 0.35 to 10.5 mg L−1 DBS (R = 0.999), a detection limit of 0.06 mg L−1 DBS and a relative standard deviation of 0.6% (n = 11) were achieved. For cationic surfactant determination, the procedure was based on the ternary complex formation between cationic surfactant, Fe(III) and chromazurol S (CAS) using CPC as reference standard solution. A linear response range between 0.34 and 10.2 mg L−1 CPC (R = 0.999), a detection limit of 0.05 mg L−1 CPC and a relative standard deviation of 0.5% (n = 11) were obtained. In both cases, the sampling throughput was 60 determinations per hour. Reagents consumption of 7.8 μg MO, 8.2 μg CPC, 37.2 μg CAS and 21.6 μg Fe(III) per determination were achieved. Analyzing river water samples and applying t-test between the results found and those obtained using reference procedures for both surfactant types provide no significant differences at 95% confidence level.  相似文献   

11.
Determination of ambroxol in an automated multi-pumping pulsed flow system.   总被引:3,自引:0,他引:3  
A new flow methodology exploiting the multi-pumping approach was developed for the spectrophotometric determination of ambroxol hydrochloride in pharmaceutical preparations. The flow manifold was implemented by using, exclusively, multiple solenoid-actuated micro-pumps, which acted simultaneously as sample insertion, solutions propelling and reagents commutation units. Linear calibration plots were obtained over an ambroxol concentration ranging from 10 to 200 mg l(-1) (r.s.d. < 0.5%, n = 15) and a sampling rate of about 60 samples per hour (flow rate = 1.92 ml min(-1), sample volume = 80 microl).  相似文献   

12.
In this work an automatic photometric procedure for the determination of chlorine in bleach samples employing N,N′-diethyl-p-phenylenediamine (DPD) as chromogenic reagent is described. The procedure was based on a falling drop system where the analyte (Cl2) was collected by a DPD solution drop (50 μL) after its delivery from the sample bulk that was previously acidified. The flow system was designed based on the multicommutation process assembling a set of three-way solenoid valves, which under microcomputer control afforded facilities to handle sample and reagent solution in order to control analyte delivering and solution drop generation. The analyte volatilization was improved by coupling online a little heating device. The detection system comprised a green LED (515 nm) and a phototransistor. Aiming to prove the usefulness of the proposed procedure a set of bleach samples was analyzed. Comparing the results with those obtained with reference method no significant difference at 95% confidence level was observed. Other profitable features such as a linear response ranging from 15 up to 100 mg L−1 Cl2 (R = 0.999); a detection limit of 4.5 mg L−1 Cl2 estimated based on the 3σ criterion; a relative standard deviation of 2.5% (n = 10) using a typical bleach sample containing 25.0 mg L−1 Cl2; a consumption of 55 μg of DPD per determination; and a analytical frequency of 20 determinations per hour were also achieved.  相似文献   

13.
A flow system designed with solenoid micro-pumps is proposed for the determination of paraquat in natural waters. The procedure involves the reaction of paraquat with dehydroascorbic acid followed by spectrophotometric measurements. The proposed procedure minimizes the main drawbacks related to the standard chromatographic procedure and to flow analysis and manual methods with spectrophotometric detection based on the reaction with sodium dithionite, i.e. high solvent consumption and waste generation and low sampling rate for chromatography and high instability of the reagent in the spectrophotometric procedures. A home-made 10-cm optical-path flow cell was employed for improving sensitivity and detection limit. Linear response was observed for paraquat concentrations in the range 0.10–5.0 mg L−1. The detection limit (99.7% confidence level), sampling rate and coefficient of variation (n = 10) were estimated as 22 μg L−1, 63 measurements per hour and 1.0%, respectively. Results of determination of paraquat in natural water samples were in agreement with those achieved by the chromatographic reference procedure at the 95% confidence level.  相似文献   

14.
An automatic flow-analysis procedure for spectrophotometric determination of cationic surfactants in surface water using a solenoid micro-pump for propelling solutions of reagents and sample is described. The proposed method is based on a ternary formation complex between chromazurol S, the Fe(III) ion, and the cationic surfactant. The flow network comprised four solenoid micro-pumps controlled by a microcomputer, which performed the sampling step by loading a reaction coil with sample and reagent solutions and displacing the sample zone through the analytical path. The system is simple, easy to operate, and very flexible, with sufficient sensitivity to determine cationic surfactants in water without any pre-concentration or separation step. After determining the best operational conditions, favourable features such as a linear response between 0.34 and 10.2?mg?L?1 of surfactant (R?=?0.999), a relative standard deviation of 0.6% (n?=?11) for a sample containing 3.4?mg?L?1 of surfactant, a detection limit of 0.035?mg?L?1 of surfactant, and a sampling throughput of 72 determinations per hour were achieved. The system was used to determine cationic surfactant in river-water samples, and recovery values between 91 and 106% were achieved.  相似文献   

15.
Nowadays, the trend towards more compact, smarter and simpler devices is generally recognized as one of the most challenging aspects in the development of analytical instrumentation. Modern flow-based procedures do not escape this tendency. The level of integration and automation and the operational functionality of Multi-pumping flow systems (MPFS) would, in most of the situations, meet this requirement. The essential elements of MPFS are multiple solenoid actuated micro-pumps strategically positioned in the flow manifold, which are accountable for solutions insertion, propelling and commutation, conditioning the establishment and subsequent detection of the reaction zone. Being the only active components of the flow manifold they provide a great operational simplicity and assure a straightforward run-time control of important analytical variables. Moreover, the reduction of active components minimizes the probability of occurrence of equipment failures, malfunctions or errors. The low size and low cost of solenoid micro-pumps make them ideal tools to build up compact environmentally friendly analytical systems, which are characterized by low solutions consumptions and the minimisation of hazardous waste generation. Furthermore, the reproducible pulsed flowing stream produced by micro-pumps actuation has proven to be a valuable feature regarding sample/reagent mixing and reaction zone homogenisation.  相似文献   

16.
In this work, an innovative, flow-through, double-beam, photometric detector with direct injection of the reagents (double-DID) was used for the first time for the determination of iron in pharmaceuticals. For stable measurement of the absorbance, double paired emission-detection LED diodes and a log ratio precision amplifier have been applied. The detector was integrated with the system of solenoid micro-pumps. The micro-pumps helped to reduce the number of reagents used and are responsible for precise solution dispensing and propelling. The flow system is characterized by a high level of automation. The total iron was determined as a Fe(II) with photometric detection using 1,10-phenanthroline as a complexing agent. The optimum conditions of the propose analytical procedure were established and the method was validated. The calibration graph was linear in the range of 1 to 30 mg L−1. The limit of detection (LOD) was 0.5 mg L−1. The throughput of the method was 90 samples/hour. The repeatability of the method expressed as the relative standard deviation (R.S.D.) was 2% (n = 10). The method was characterized by very low consumption of reagents and samples (20 μL each) and a small amount of waste produced (about 540 µL per analysis). The proposed flow method was successfully applied for determination of iron in pharmaceutical products. The results were in good agreement with those obtained using the manual UV-Vis spectrophotometry and with values claimed by the manufacturers. The flow system worked very stably and was insensitive to bubbles appearing in the system.  相似文献   

17.
Differential kinetic analysis can be implemented in a multi-pumping flow system, and this was demonstrated in relation to an improved spectrophotometric catalytic determination of iron and vanadium in Fe-V alloys. The method exploited the influence of Fe(II) and V(IV) on the rate of iodide oxidation by Cr(VI) under acidic conditions; therefore the Jones reductor was needed. The sample was inserted into an acidic KI stream that acted also as carrier stream, and a Cr(VI) solution was added by confluence. Successive measurements were performed during sample passage through the detector, each one related to a different yet reproducible condition for reaction development. Data treatment involved multivariate calibration by the PLS algorithm.The proposed system is very simple and rugged, allowing about 50 samples to be run per hour, meaning 48 mg KI per determination. The first two latent variables carry ca. 94% of the analytical information, pointing out that the intrinsic dimensionality of the data set is two. Results are in agreement with inductively coupled argon plasma-optical emission spectrometry.  相似文献   

18.
A novel procedure has been developed for spectrophotometric determination of anionic surfactants in water using a solenoid micro-pump as fluid-propulsion device. The proposed method is based on substitution of methyl orange (MO) by anionic surfactants in the formation of an ion-pair with the cetyl pyridine ion (CPC+) at pH 5.0. The flow network comprised four solenoid micro-pumps which, under microcomputer control, enabled sample and reagent introduction, and homogenisation in the reaction zone. The system is flexible and simple to operate and control, and sensitive and precise. The analytical plot for the anionic surfactant was linear between 1.43×10–6 and 1.43×10–5 mol L–1 (0.5 to 5.0 mg L–1; R=0.997, n=5). The relative standard deviation was 0.8% (n=11) for a sample containing 5.74×10–6 mol L–1 (2 mg L–1) surfactant. The limit of detection was 9.76×10–8 mol L–1 (0.034 mg L–1) and the sampling throughput was 60 determinations per hour. The results obtained for washing-water samples were comparable with those obtained by use of the reference method, and no significant differences at the 95% confidence level were observed.  相似文献   

19.
In this work a simple, fast, sensitive and selective flow-based procedure for the chemiluminometric determination of carvedilol, a recent non-cardioselective β-blocker with noteworthy antioxidant activity, is proposed. The developed methodology takes advantage of the antioxidant capacity of carvedilol to inhibit the chemiluminescence response resulting from the oxidation of luminol by hypochlorite, by acting as a hypochlorite scavenger. The analytical process was implemented in a multi-pumping flow system that employs multiple solenoid actuated micro-pumps as the only active components. These acted as solution insertion, propelling and commuting units assuring an easily controlled, low cost, compact and reliable analytical system.A linear working range for carvedilol concentrations ranging from 1.2 × 10−7 to 3.0 × 10−6 mol l−1 (r > 0.999, n = 6), was obtained, with a detection limit of 8.7 × 10−9 mol l−1. The system handles about 65 samples per hour yielding precise results (R.S.D. < 1.3%, n = 10). Recoveries within 95 and 104% were obtained.  相似文献   

20.
A novel method for the spectrophotometric determination of nitrite in water   总被引:4,自引:0,他引:4  
Aydın A  Ercan O  Taşcıoğlu S 《Talanta》2005,66(5):1181-1186
A rapid, simple, selective and sensitive method for the spectrophotometric determination of nitrite in water has been developed and optimum reaction conditions along with other analytical parameters have been evaluated. Nitrite reacts with barbituric acid in acidic solution to give the nitroso derivative, violuric acid. At analytical wavelength of 310 nm, Beer's law is obeyed over the concentration range 0.00–3.22 ppm of nitrite. The molar absorptivity is 15330 ± 259.7 (95%) with pooled standard deviation of 355.57 and R.S.D. of 2.32%. As well as the method is sensitive (2.99 × 10−3 μg NO2 cm−2) and selective, it tolerates most of the potential interferents. It has been successfully applied to nitrite determination in natural waters by use of a calibration graph with determination limit of 1.66 μg NO2 in 100 mL working solution corresponding to minimum 9.5 ppb NO2–N in water samples. Lower concentrations of nitrite (3.0 μg NO2/L sample) is precisely analyzed by using the method of dilution with sample, with R.S.D. of lower than 0.5%. The results were compared with standard N-(1-naphtyl)ethylenediamine dihydrochloride method and very good agreement between the data was observed. The method can easily be applied in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号