首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The interaction of iron III salts and cetylpyridinium chloride (CPC) has been studied at the air/water and silica/water interfaces. The surface tension of cetylpyridinium chloride has been determined in aqueous solutions in the presence of iron III chloride and iron III nitrate at two constant pH values, namely, 3.5 and 1.2. It is shown that the surface tension of the cationic surfactant depends upon the ionic strength of the solution through the pH adjustment in the presence of the former salt but not in the presence of the latter. The effect of iron III nitrate on the surface tension of CPC is similar to that of potassium nitrate, indicating that the iron III various-hydrolyzed species do not interfere with the composition of the air/water interface. The competitive adsorption of iron III nitrate salt and the cationic surfactant at a silica/water interface was next investigated. The adsorption isotherms were determined at pH 3.5. It is shown that although the iron III ions, which were added to the silica dispersion in the presence of the cetylpyridinium ions, were strongly bound to the anionic surface sites, the surfactant ions are not salted out in the solution but remain in close vicinity of the silica surface. Conversely as the cationic surfactant is added first to the silica dispersion in the presence of the adsorbed iron III ions, the metal ions and the surfactant ions are both coadsorbed onto the silica surface. It is suggested that iron III hydrolyzed or free cations and the cationic surfactant molecules may not compete for the same adsorption sites onto the silica surface.  相似文献   

2.
The effects of salts on the solubility of amphiphilic organic molecules are of importance to numerous atmospheric, environmental, and biological systems. A detailed picture of the influence of dissolved atmospheric salts, NaCl and Na(2)SO(4), on the adsorption of hexanoic acid at the vapor/water interface is developed using vibrational sum-frequency spectroscopy and surface tension measurements as a function of time, organic concentration, and solution pH. We have found that for hexanoic acid adsorption at the vapor/water interface, a fast initial adsorption is followed by two considerably slower processes: a reorientation of the polar headgroup and a restructuring of the headgroup solvation shell. The addition of salts affects this restructuring by reducing the range of water--headgroup interactions immediately upon surface adsorption for ion containing solutions. Reorientation of the organic headgroup with time occurs at the surface of both salt-containing and salt-free solutions, but the most stable orientation differs with the added ions. The dissolved salts also enhance the interfacial concentration of hexanoic acid, consistent with the known salting-out behavior of Cl(-) and SO(4)(2-) anions.  相似文献   

3.
This paper describes the use of graphene oxide/silica modified with nitro‐substituted tris(indolyl)methane as a solid‐phase extraction sorbent for the determination of organic acids. The resultant graphene oxide/silica modified with nitro‐substituted tris(indolyl)methane was characterized by FTIR spectroscopy and adsorption experiments. Solid‐phase extraction parameters such as sorbent type, sample solution pH, sample loading rate, eluent salt concentration, eluent methanol concentration, elution rate, sample loading, and elution volume were optimized. The method showed good precision, accuracy, sensitivity, and linear response for organic acids analysis over a concentration range of 1–100 μg/L for benzoic acid, p‐methoxybenzoic acid, and salicylic acid and 5–100 μg/L for the remaining organic acids (cinnamic acid, p‐chlorobenzoic acid, and p‐bromobenzoic acid) with coefficients of determination (r2) of higher than 0.9957. Limits of detection from 0.50 to 1.0 μg/L for six organic acids were achieved. The developed method was successfully applied to determine organic acids in real samples.  相似文献   

4.
A novel method for identification of two aromatic isomers of mono hydroxy benzoic acid (HBA) was reported by using their different perturbation effects on the potential oscillations of a Belousov-Zhabotinsky (BZ) system. In such a system, a macrocyclic complex of Cu [CuL](ClO4)2 was used as catalyst in which ligand L is 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene. To the BZ system, 3-hydroxy benzoic acid (3-HBA) could temporarily quench and regenerate potential oscillations with damping characters after inhibition time (tin) while 4-hydroxy benzoic acid (4-HBA) could only change the oscillation amplitude (ΔA) to give damping oscillations with no inhibition time. Thus, these two isomers of HBA were identified. Reaction mechanisms of BZ have been proposed by FKN model. An explanation of perturbation mechanism is that, although 3-HBA reacted with BrO2 while 4-HBA reacted with BrO3, they all produced 1,4-quinone.  相似文献   

5.
Adsorption data of an organic cation (propranololium chloride) and an organic anion (sodium 1-naphthalene sulfonate) were measured by frontal analysis on two RPLC adsorbents, Symmetry-C18 and XTerra-C18, with aqueous solutions of methanol as the mobile phases. The influence of supporting neutral salts on the adsorption behavior of these two ions are compared. The Henry constants are close (H approximately 5). The four sets of isotherm data are all well accounted for using the bi-Moreau model. However, the isotherms of the two ions behave differently at high concentrations. The initial behaviors of all the isotherms are antilangmuirian but remain so in a much wider concentration range for the cation than for the anion, due to its stronger adsorbate-adsorbate interactions on the low-energy adsorption sites. The retention times of both ions increase with increasing concentration of neutral salt in the mobile phase, suggesting the formation of ion-pair complexes, with Cl- for the cation and with Na+ for the anion. The adsorbate-adsorbate interactions vanish in the presence of salt and the bi-Moreau isotherm model tends toward a bi-Langmuir model. Differences in adsorption behavior are also observed between the cation and the anion when bivalent inorganic anions and cations, respectively, are dissolved in the mobile phase. High concentration band profiles of 1-naphthalene sulfonic acid are langmuirian, except in the presence of a trivalent cation, while those of propranolol are antilangmuirian under certain conditions even with uni- or divalent cations.  相似文献   

6.
The behavior of two polydisperse nonionic surfactants, poly (oxyethylene) glycol alkylphenyl ether TX-35 and TX-100, at the prewetted silica gel/n-heptane and dried silica gel/n-heptane interfaces has been compared by the determination of the average adsorption isotherms of the polydisperse surfactants and of displacement enthalpies. From HPLC experiments, we could also separately quantify the adsorption of each ethyleneoxide (EO) fractions for silica gel from the polydisperse surfactant solution. The adsorption isotherms clearly indicate an incomplete preferential adsorption of the large (EO) chains over the small ones, as well on dried silica gel as on a prehydrated sample. This preferential adsorption and its driving force follow the solubility rules of the poly(oxyethylene) glycol alkylphenyl ether in an apolar solvent and support the idea of a solubility-limited adsorption: solubility in organic solvents of the smaller (EO) chains is much more significant than that of the longer ones and hence prevents adsorption of the smaller species. Consequently, it is observed that the presence of interfacial water decreases the affinity of TX-35 molecules for the hydrophilic silica surface due to the hydration of (EO) chains. In contrast, for TX-100 adsorption after the prewetting treatment the clearest trend is a drastic increase of the adsorption ascribed to the additional solubilization (and micellization) of the TX-100 molecules in the interfacial aqueous phase. The differential molar enthalpies of displacement show a change in the adsorption mechanism, depending on the presence of molecular water on the surface. In the initial part of the adsorption isotherm, a prevailing exothermic process is obtained with prehydrated silica and suggests that hydration of the polar heads of TX-35 and the solubilization of the TX-35 in interfacial water are occurring. For higher equilibrium concentrations, the enthalpies of displacement observed with the prehydrated adsorbent become slightly lower than those obtained with dry silica gel. It may be that this difference is due to the micellization phenomenon of the surfactant species with longer EO chains in interfacial water. These features emphasize the influence of interfacial water on the adsorption of EO fractions from organic solvent. Copyright 2000 Academic Press.  相似文献   

7.
Colloidal stabilization of nanoparticle dispersions is central to applications including coatings, mineral extraction, and dispersion of oil spills in oceanic environments, which often involves oil-mineral-aggregates (OMAs). We have an ongoing interest in the modulation of amphiphile micellization and adsorption behavior in aqueous colloidal dispersions in the presence of various additives. Here we evaluate the effect of added salts CaCl2, MgCl2, and NaCl on the micellization and adsorption behavior of the poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer Pluronic P105 (EO37PO56EO37). In 0.10 wt% silica nanoparticle (10.6 nm average diameter) dispersion, adsorbed block copolymer layer formation begins at a critical surface micelle concentration (csmc) of 0.02 wt%, well below the critical micellization concentration of Pluronic P105 in water. Dye solubilization experiments demonstrate an increase in the csmc upon addition of each salt. Each added salt reaches a level of maximum effectiveness in its ability to disfavor Pluronic P105 adsorption at the silica surface. These peak levels occur at concentrations of 0.005, 0.03, and 0.05 M for CaCl2, MgCl2, and NaCl, respectively, in the presence of 0.10 wt% silica nanoparticles. We explain these results in the context of an electrostatic displacer mechanism and discuss possible connections to OMA-dispersant formation.  相似文献   

8.
In a companion paper, we describe the influence of the concentration and the nature of salts dissolved in the mobile phase (methanol:water, 40:60, v/v) on the adsorption behavior of propranolol (R'-NH2+ -R, Cl-) on XTerra-C18. The same experiments were repeated on a Symmetry-C18 column to compare the adsorption mechanisms of this ionic compound on these two very different RPLC systems. Frontal analysis (FA) measurements were first carried out to determine the best isotherm model accounting for the adsorption behavior of propranolol hydrochloride on Symmetry with a mobile phase without salt (and only 25% methanol to compensate for the low retention in the absence of salt). The adsorption data were best modeled by the bi-Moreau model. Large concentration band profiles of propranolol were recorded with mobile phases having increasing KCl concentrations (0, 0.002, 0.005, 0.01, 0.05, 0.1 and 0.2 M) and the best values of the isotherm coefficients were determined by the inverse method (IM) of chromatography. The general effect of a dissociated salt in the mobile phase was the same as the one observed earlier with XTerra-C18. Increasing the salt concentration increases the two saturation capacities of the adsorbent and the adsorption constant on the low-energy sites. The adsorption constant on the high-energy sites decreases and the adsorbate-adsorbate interactions tend to vanish with increasing salt concentration of the mobile phase. The saturation capacities decrease with increasing radius of the monovalent cation (Na+, K+, Cs+, etc.). Using sulfate as a bivalent anion (Na2SO4) affects markedly the adsorption equilibrium: the saturation capacities are drastically reduced, the high-energy sites nearly disappear while the adsorption constant and the adsorbate-adsorbate interactions on the low-energy sites increase strongly. The complexity of the thermodynamics in solution might explain the different influences of these salts on the adsorption behavior.  相似文献   

9.
A study has been carried out of the adsorption of benzoic acid from cyclohexane solution onto the hydrophilic surface of calcite.

We determined initially the chemical and mineral composition of the solid, its specific surface area and its granulometry. This was followed by the determination of the enthalpies of immersion of calcite in different solvents. These thermodynamic properties gave information on the energetics of calcite—solvent interactions. In this way, we could construct a scale of affinities of the different organic molecules and water for the calcite surface. It was noted that the enthalpies were higher in unsaturated than in saturated organic solvents, and higher in water than in the organic solvents.

The adsorption isotherms and the differential molar enthalpies of displacement were determined in the presence and the absence of water. The role played by water in the adsorption of polar organic molecules from the oil phase has not been clearly explained previously. In this paper, we indicate how the presence of water can modify the adsorption of aromatic compounds on the surface of calcite. As regards the adsorption isotherms, the presence of water essentially increases the amount of adsorption. The results of the calorimetric studies were found to be surprising; we observed that the differential molar enthalpies of displacement were endothermic.

Similar experiments were carried out with dolomite and n-heptane solution and the results compared with those obtained with calcite and cyclohexane, leading to the formulation of a general model concerning the adsorption of small polar organic molecules from organic solvents onto the surfaces of the carbonates.  相似文献   


10.
陈禹银  刘凡  刘永春 《物理化学学报》2005,21(11):1211-1216
在293~313 K温度范围, 研究了硅胶在环己烷溶液中对苯甲酸和苯的吸附. 发现苯甲酸能非常好地服从计量置换吸附模型(SDM-A). 在用SDM-A处理苯的吸附时, 出现折线形的吸附等温线, 折线的转折点正好是单分子层吸附与多分子层吸附的分界点. 基于SDM-A, 研究了吸附热力学, 建立了吸附热力学的计算公式. 发现在环己烷溶液中苯甲酸被硅胶吸附是自发的、放热的熵增大过程, 而苯被吸附是自发的放热的熵减少过程, 苯甲酸的吸附自由能大于苯, 而吸附焓小于苯, 这是因为苯甲酸有更大的亲吸附剂作用和疏溶剂作用的结果.  相似文献   

11.
It was shown that the structure of a surface complex and the nature of an adsorption bond can be determined from the material balance of adsorption of H+and OHions and organic compound. A calculation procedure was considered using adsorption of benzoic acid on silica gel and zirconia as examples. It was established that adsorption of benzoic acid on silica gel was accompanied by the release of H+ions resulted from the formation of surface hydrogen bonds, whereas adsorption on zirconia, by the substitution of OHions in coordination sphere of Zr(IV).  相似文献   

12.
A controlled, rapid, and potentiostat‐free method has been developed for grafting the diazonium salt (3,5‐bis(4‐diazophenoxy)benzoic acid tetrafluoroborate (DCOOH)) on gold and carbon substrates, based on a Zn‐mediated chemical dediazonation. The highly stable thin layer organic platforms obtained were characterized by cyclic voltammetry, AFM, impedance, XP, and Raman spectroscopies. A dediazonation mechanism based on radical formation is proposed. Finally, DCOOH was proved as a linker to an aminated electroactive probe.  相似文献   

13.
The orientation and hydrogen bonding of water molecules in the vapor/water interfacial region in the presence of SO2 and CO2 gas are examined using vibrational sum-frequency spectroscopy (VSFS) to gain insight into the adsorption and reactions of these gases in atmospheric aerosols. The results show that an SO2 surface complex forms when the water surface is exposed to an atmosphere of SO2 gas. Reaction of SO2 with interfacial water leads to other spectral changes that are examined by studying the VSF spectra and surface tension isotherms of several salts added to the aqueous phase, specifically NaHSO3, NaHCO3, Na2SO3, Na2CO3, Na2SO4, and NaHSO4. The results are compared with similar studies of CO2 adsorption and reaction at the surface. A weakly bound surface complex is not observed with CO2.  相似文献   

14.
Catalytic C-C double bond cleavage of α,β-enones with a 1-alkene and H2O was carried out in the presence of a (Ph3P)3RhCl catalyst, 2-amino-3-picoline, cyclohexylamine, benzoic acid, and alkyl group-immobilized silica spheres. Upon completion of the reaction, the corresponding ketones were obtained without needing a further hydrolysis step. In this reaction, alkyl group-immobilized silica spheres act as a water reservoir for hydrolysis of an intermediate ketimine and as a phase divider between the organic solution and H2O.  相似文献   

15.
The structure of the octadecyl (C18) chain layer attached to a silica surface in the presence of binary solvents (acetonitrile/water; methanol/water) was investigated by electron paramagnetic resonance (EPR) and reverse-phase high-performance liquid chromatography (RP-HPLC), using 4-hydroxy-2,2,6,6 tetramethylpiperidine-N-oxyl (Tempol) to mimic the behavior of pollutants with medium-low polarity. The computer-aided analysis of the EPR spectra provided structural and dynamical information of the probe and its environments which clarified the modifications of the chain conformations that occur at different solvent compositions. Capacity factors, k', were calculated as a function of the percentage of water/organic solvent (mobile phase), and the retention behavior of the C18-functionalized silica surface (stationary phase) was compared with the results obtained with EPR analysis under static conditions. In particular, EPR analysis showed that, at percentages of ACN equal or higher than 50%, the chain layer assume a quite ordered structure, whereas at percentages lower than 50% the chains tend to collapse and fold on the silica surface. In this latter situation, the hydrophobic net of the C18 chains strongly limits Tempol mobility. In methanol/water mixtures, both EPR and RP-HPLC analysis showed that the probe was adsorbed into a poorly ordered interphase. If the residual silanols at the silica surface were bonded to a sililating agent (endcapping), both EPR and RP-HPLC analysis showed a decreased adsorption of the probe with respect to the non-endcapped silica at the same mobile phase composition.  相似文献   

16.
外加盐对壳聚糖树脂吸附游离酸的影响   总被引:5,自引:0,他引:5  
利用电化实验技术,跟踪观察交联壳聚糖树脂在不同环境体系吸附低浓度游离酸的行为。讨论了在三元体系(酸 水 盐)和四元体系(酸 水 有机物 盐)中,交联壳聚糖树脂吸附游离酸的规律。利用固-液相互作用方程,求取吸附剂-吸附质相互作用能。实验结果表明,交联壳聚糖树脂在三元体系和四元体系中吸附游离酸,表观吸附速率常数(k)随着外加盐浓度的增大而减小。发现表观吸附速率常数(k)与吸附剂-吸附质相互作用能(U)存在线性关系。  相似文献   

17.
The influence of the inorganic salt-silica gel surface interaction on the chemical and phase compositions and sorption properties of composites of the salt in silica gel pores type is studied. Two possible interaction mechanisms are considered: (1) the ion-exchange adsorption of metal cations on the silica gel surface from a solution of a salt (CaCl2, CuSO4, MgSO4, Na2SO4, and LiBr) and (2) the solid-phase spreading of a salt (CaCl2) over the silica gel surface. The adsorption of metal cations on the silica gel surface in the impregnation step affords ≡Si-OM n+1 surface complexes in the composites. As a result, two salt phases are formed in silica gel pores at the composite drying stage, namely, an amorphous phase on the surface and a crystalline phase in the bulk. The sorption equilibrium between the CaCl2/SiO2 system and water vapor depends on the ratio of the crystalline phase to the amorphous phase in the composite.  相似文献   

18.
1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) organic catalyst has generated a tremendous impact in the metal-free ring-opening polymerization of (di)lactones. Interestingly, its extraction after use has never been studied so far and a simple deactivation by addition of benzoic acid to generate the corresponding salt has always been supposed to kill its activity. This study reveals and highlights the importance of the work-up to remove or at least drastically limit the presence of the benzoic acid/DBU salt from poly(l-lactide). Three different extraction methods allowed us to conclude that a two-step work-up gathering liquid/liquid extractions and a drop by drop precipitation is highly required to keep the enantiomerically pure lactic acid polymer safe. If not perfectly extracted the benzoic acid/DBU salt has been proved to degrade the materials during a melt process even during a differential scanning calorimetry experiment.  相似文献   

19.
The effect of a "guest-host" interaction on the phase composition and sorption properties of the composite sorbents "salt in a porous host matrix" has been studied. The matrix was a mesoporous silica of KSK type, while the confined salts were CaCl(2), CuSO(4), MgSO(4), and Na(2)SO(4). Both structure and properties of the composites were studied by X-ray diffraction, titration in the pH range of 2-9, differential dissolution, and TG techniques. Chemical interaction between the silica surface and the salt during preparation results in the formation of the salt surface complexes and stabilization of the dispersed salt in two phases, namely, a crystalline phase and an X-ray amorphous phase. The water sorption properties of the composites depend on the phase composition and can be intently modified by using variation of the preparation conditions.  相似文献   

20.
Chen TS  Liu CY 《Electrophoresis》2001,22(12):2606-2615
A histidine-functionalized silica was prepared by covalent bonding of the functional groups to silane-treated silica gel. Conversion of functional groups was confirmed by infrared (IR) spectra, elemental analysis, and potentiometry. The functionality of the silica gel is 0.293 mmol g(-1). The coordination behavior of the histidine-functionalized silica was investigated by metal capacity and electron paramagnetic resonance (EPR). EPR measurements at different copper loadings were made. The results showed that the copper histidine complex might be distorted tetragonal. Both histidine-functionalized silica and its copper complex were employed as stationary phases for packed capillary electrochromatography (CEC). Electrical current was found helpful for evaluating the properties of frit construction and the stationary phase packing. Test samples include neutral compounds, inorganic anions and organic anions. Factors influencing the separation behavior have been studied. With copper-histidine functionalized silica under the condition of citrate buffer (10 mM, pH 4.0) and applied voltage of -20 kV, the separation of benzoic acid, D- and L-mandelic acid, phthalic acid and salicylic acid could be achieved within 12 min. The column efficiency for these acids was more than 1.2 x 10(5) plates m(-1), except salicylic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号