首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A closed-form model for the computation of temperature distribution in an infinitely extended isotropic body with a time-dependent moving-heat sources is discussed. The temperature solutions are presented for the sources of the forms: (i) 01(t)=0 exp(−λt), (ii) 02(t) =0(t/t *)exp(−λt), and 03(t)=0[1+a cost)], where λ and ω are real parameters and t * characterizes the limiting time. The reduced (or dimensionless) temperature solutions are presented in terms of the generalized representation of an incomplete gamma function Γ(α,x;b) and its decomposition C Γ and S Γ. The solutions are presented for moving, -point, -line, and -plane heat sources. It is also demonstrated that the present analysis covers the classical temperature solutions of a constant strength source under quasi-steady state situations. Received on 13 June 1997  相似文献   

2.
We prove the asymptotic stability of two-state nonplanar Riemann solutions for a class of multidimensional hyperbolic systems of conservation laws when the initial data are perturbed and viscosity is added. The class considered here is those systems whose flux functions in different directions share a common complete system of Riemann invariants, the level surfaces of which are hyperplanes. In particular, we obtain the uniqueness of the self-similar L entropy solution of the two-state nonplanar Riemann problem. The asymptotic stability to which the main result refers is in the sense of the convergence as t→∞ in Lloc1 of the space of directions ξ = x/t. That is, the solution u(t, x) of the perturbed problem satisfies u(t, tξ)→R(ξ) as t→∞, in Lloc1(ℝn), where R(ξ) is the self-similar entropy solution of the corresponding two-state nonplanar Riemann problem.  相似文献   

3.
We establish the existence of Lipschitz stable invariant manifolds for semiflows generated by a delay equation x′ = L(t)x t + f (t, x t , λ), assuming that the linear equation x′ = L(t)x t admits a polynomial dichotomy and that f is a sufficiently small Lipschitz perturbation. Moreover, we show that the stable invariant manifolds are Lipschitz in the parameter λ. We also consider the general case of nonuniform polynomial dichotomies.  相似文献   

4.
In this paper we study linear reaction–hyperbolic systems of the form , (i = 1, 2, ..., n) for x > 0, t > 0 coupled to a diffusion equation for p 0 = p 0(x, y, θ, t) with “near-equilibrium” initial and boundary data. This problem arises in a model of transport of neurofilaments in axons. The matrix (k ij ) is assumed to have a unique null vector with positive components summed to 1 and the v j are arbitrary velocities such that . We prove that as the solution converges to a traveling wave with velocity v and a spreading front, and that the convergence rate in the uniform norm is , for any small positive α.  相似文献   

5.
The field measurements and numerical results for intermittent flow regime in a sandy soil show that the time distributions of the soil water flux q(z, t), and the soil water content θ(z, t)at various depths are periodic in nature, where t is time and z is the depth (i.e., at the surface z = 0 and at depths z = − 5, − 10, − 15 cm, etc). The period of q(z, t) and θ(z, t) variations are generally determined by the sum of the duration of pulse and the duration between the initiation of two consecutive pulses of water at the soil surface. Fourier series models have been given for q(z, t) and θ(z, t) variations. The predicted Fourier results for these variations have been compared with the experimentally verified numerical results—designated as observed values. The results show that the amplitudes of these variations were damped exponentially with depth, and the phase shift increased linearly with depth.  相似文献   

6.
Systems of the form
generalize differential equations with delays r(t) < 0 which are given implicitly by the history x t of the state. We show that the associated initial value problem generates a semiflow with differentiable solution operators on a Banach manifold. The theory covers reaction delays, signal transmission delays, threshold delays, and delays depending on the present state x(t) only. As an application we consider a model for the regulation of the density of white blood cells and study monotonicity properties of the delayed argument function . There are solutions (r, x) with τ′(t) > 0 and others with τ′(t) < 0. These other solutions correspond to feedback which reverses temporal order; they are short-lived and less abundant. Transient behaviour with a sign change of τ′ is impossible.   相似文献   

7.
On thermodynamic potentials in linear thermoelasticity   总被引:1,自引:0,他引:1  
The four thermodynamic potentials, the internal energy u=uij,s), the Helmholtz free energy f=fij,T), the Gibbs energy g=gij,T) and the enthalpy h=hij,s) are derived, independently of each other, by using the Duhamel–Neumann extension of Hooke's law and an assumed linear dependence of the specific heat on temperature. A systematic procedure is then presented to express all thermodynamic potentials in terms of four possible pairs of independent state variables. This procedure circumvents a tedious transition from one potential to another, based on the formal change of variables, and inversions of the stress–strain and entropy–temperature relations. The general results are applied to uniaxial loading paths under isothermal, adiabatic, constant stress, and constant strain conditions. An interplay of adiabatic and isothermal elastic constants in the expressions for exchanged heat along certain thermodynamic paths is indicated.  相似文献   

8.
In this paper, we consider v(t) = u(t) − e tΔ u 0, where u(t) is the mild solution of the Navier–Stokes equations with the initial data u0 ? L2(\mathbb Rn)?Ln(\mathbb Rn){u_0\in L^2({\mathbb R}^n)\cap L^n({\mathbb R}^n)} . We shall show that the L 2 norm of D β v(t) decays like t-\frac |b|-1 2-\frac n4{t^{-\frac {|\beta|-1} {2}-\frac n4}} for |β| ≥ 0. Moreover, we will find the asymptotic profile u 1(t) such that the L 2 norm of D β (v(t) − u 1(t)) decays faster for 3 ≤ n ≤ 5 and |β| ≥ 0. Besides, higher-order asymptotics of v(t) are deduced under some assumptions.  相似文献   

9.
We establish new properties of solutions of the functional differential equation x′(t) = ax(t) + bx(t − r) + cx′(t − r) + px(qt) + hx′(qt) + f 1(x(t), x(t − r), x′(t − r), x(qt), x′(qt)) in the neighborhood of the singular point t = +∞. __________ Translated from Neliniini Kolyvannya, Vol. 10, No. 1, pp. 144–160, January–March, 2007.  相似文献   

10.
We obtain the linear viscoelastic shear moduli of complex fluids from the time-dependent mean square displacement, <Δr 2(t)>, of thermally-driven colloidal spheres suspended in the fluid using a generalized Stokes–Einstein (GSE) equation. Different representations of the GSE equation can be used to obtain the viscoelastic spectrum, G˜(s), in the Laplace frequency domain, the complex shear modulus, G *(ω), in the Fourier frequency domain, and the stress relaxation modulus, G r (t), in the time domain. Because trapezoid integration (s domain) or the Fast Fourier Transform (ω domain) of <Δr 2(t)> known only over a finite temporal interval can lead to errors which result in unphysical behavior of the moduli near the frequency extremes, we estimate the transforms algebraically by describing <Δr 2(t)> as a local power law. If the logarithmic slope of <Δr 2(t)> can be accurately determined, these estimates generally perform well at the frequency extremes. Received: 8 September 2000/Accepted: 9 March 2000  相似文献   

11.
In some investigations on variational principle for coupled thermoelastic problems, the free energy Φ(eij,θ) ,where the state variables are elastic strain eij and temperature increment θ, is expressed as Φ(eij,θ)=λ/2ekkeij=uek1ek1-γekkθ-c/2 p θ2/T0(0.1) This expression is employed only under the condition of |θ|≤T0(absolute temperature of reference) But the value of temperature increment is great, even greater than T0 in thermal shock. And the material properties (λ ,μ ,ν ,c , etc.) will not remain constant, they vary with θ. The expression of free energy for this condition.is derived in this paper. Equation (0.1) is its special case.Euler’s equations will be nonlinear while this expression of free energy has been introduced into variational theorem. In order to linearise, the time interval of thermal shock is divided into a number of time elements Δtk, (Δtk=tk-tk-1,k=1,2…,n), which are so small that the temperature increment θk within it is very small, too. Thus, the material properties may be defined by temperature field Tk-1=T(x1,x2,x3,tk-1) at instant tk-1 , and the free energy Φk expressed by eg. (0.1) may be employed in element Δtk.Hence the variational theorem will be expressed partly and approximately.  相似文献   

12.
The search for traveling wave solutions of a semilinear diffusion partial differential equation can be reduced to the search for heteroclinic solutions of the ordinary differential equation ü − cu̇f(u) = 0, where c is a positive constant and f is a nonlinear function. A heteroclinic orbit is a solution u(t) such that u(t) → γ 1 as t → −∞ and u(t) → γ 2 as t → ∞ where γ 1γ 2 are zeros of f. We study the existence of heteroclinic orbits under various assumptions on the nonlinear function f and their bifurcations as c is varied. Our arguments are geometric in nature and so we make only minimal smoothness assumptions. We only assume that f is continuous and that the equation has a unique solution to the initial value problem. Under these weaker smoothness conditions we reprove the classical result that for large c there is a unique positive heteroclinic orbit from 0 to 1 when f(0) = f(1) = 0 and f(u) > 0 for 0 < u < 1. When there are more zeros of f, there is the possibility of bifurcations of the heteroclinic orbit as c varies. We give a detailed analysis of the bifurcation of the heteroclinic orbits when f is zero at the five points −1 < −θ < 0 < θ < 1 and f is odd. The heteroclinic orbit that tends to 1 as t → ∞ starts at one of the three zeros, −θ, 0, θ as t → −∞. It hops back and forth among these three zeros an infinite number of times in a predictable sequence as c is varied.  相似文献   

13.
We deal with a reaction–diffusion equation u t = u xx + f(u) which has two stable constant equilibria, u = 0, 1 and a monotone increasing traveling front solution u = φ(x + ct) (c > 0) connecting those equilibria. Suppose that u = a (0 < a < 1) is an unstable equilibrium and that the equation allows monotone increasing traveling front solutions u = ψ1(x + c 1 t) (c 1 < 0) and ψ2(x + c 2 t) (c 2 > 0) connecting u = 0 with u = a and u = a with u = 1, respectively. We call by an entire solution a classical solution which is defined for all . We prove that there exists an entire solution such that for t≈ − ∞ it behaves as two fronts ψ1(x + c 1 t) and ψ2(x + c 2 t) on the left and right x-axes, respectively, while it converges to φ(x + ct) as t→∞. In addition, if c > − c 1, we show the existence of an entire solution which behaves as ψ1( − x + c 1 t) in and φ(x + ct) in for t≈ − ∞.  相似文献   

14.
Let v and ω be the velocity and the vorticity of the a suitable weak solution of the 3D Navier–Stokes equations in a space-time domain containing z0=(x0, t0)z_{0}=(x_{0}, t_{0}), and let Qz0,r = Bx0,r ×(t0 -r2, t0)Q_{z_{0},r}= B_{x_{0},r} \times (t_{0} -r^{2}, t_{0}) be a parabolic cylinder in the domain. We show that if either $\nu \times \frac{\omega}{|\omega|} \in L^{\gamma,\alpha}_{x,t}(Q_{z_{0},r})$\nu \times \frac{\omega}{|\omega|} \in L^{\gamma,\alpha}_{x,t}(Q_{z_{0},r}) with $\frac{3}{\gamma} + \frac{2}{\alpha} \leq 1, {\rm or} \omega \times \frac{\nu} {|\nu|} \in L^{\gamma,\alpha}_{x,t} (Q_{z_{0},r})$\frac{3}{\gamma} + \frac{2}{\alpha} \leq 1, {\rm or} \omega \times \frac{\nu} {|\nu|} \in L^{\gamma,\alpha}_{x,t} (Q_{z_{0},r}) with \frac3g + \frac2a £ 2\frac{3}{\gamma} + \frac{2}{\alpha} \leq 2, where Lγ, αx,t denotes the Serrin type of class, then z0 is a regular point for ν. This refines previous local regularity criteria for the suitable weak solutions.  相似文献   

15.
The radiated noise from isotropic turbulence   总被引:4,自引:0,他引:4  
The noise radiated from isotropic turbulence at low Mach numbers and high Reynolds numbers, as derived by Proudman (1952), was the first application of Lighthill's Theory of Aerodynamic Noise to a complete flow field. The theory presented by Proudman involves the assumption of the neglect of retarded-time differences and so replaces the second-order retarded-time and space covariance of Lighthill's stress tensor, T ij , and in particular its second time derivative, by the equivalent simultaneous covariance. This assumption is a valid approximation in the derivation of the 2 T ij /t 2 covariance at low Mach numbers, but is not justified when that covariance is reduced to the sum of products of the time derivatives of equivalent second-order velocity covariances as required when Gaussian statistics are assumed. When these assumptions are removed the changes to the analysis are substantial, but the change in the numerical result for the total acoustic power is small.This paper is based on an alternative analysis which does not neglect retarded times. It makes use of the Lighthill relationship, whereby the fourth-order T ij retarded-time covariance is evaluated from the square of a similar second-order covariance, which is assumed known. In this derivation no statistical assumptions are involved. This result, using distributions for the second-order space-time velocity squared covariance based on the Direct Numerical Simulation (DNS) results of both Sarkar and Hussaini (1993) and Dubois (1993), is compared with a re-evaluation of Proudman's original model. These results are then compared with the sound power derived from a phenomenological model based on simple approximations to the retarded-time/space covariance of T xx . Finally, the recent numerical solutions of Sarkar and Hussaini (1993) for the acoustic power are compared with the results obtained from the analytic solutions.  相似文献   

16.
In association with multi-inhomogeneity problems, a special class of eigenstrains is discovered to give rise to disturbance stresses of interesting nature. Some previously unnoticed properties of Eshelby’s tensors prove useful in this accomplishment. Consider the set of nested similar ellipsoidal domains {Ω1, Ω2,⋯,Ω N+1}, which are embedded in an infinite isotropic medium. Suppose that
in which and ξ t a p , p=1,2,3 are the principal half axes of Ω t . Suppose, the distribution of eigenstrain, ε ij *(x) over the regions Γ t t+1−Ω t , t=1,2,⋯,N can be expressed as
(‡)
where x k x l x m is of order n, and f ijklm (t) represents 3N(n+2)(n+1) different piecewise continuous functions whose arguments are ∑ p=1 3 x p 2 /a p 2. The nature of the disturbance stresses due to various classes of the piecewise nonuniform distribution of eigenstrains, obtained via superpositions of Eq. (‡) is predicted and an infinite number of impotent eigenstrains are introduced. The present theory not only provides a general framework for handling a broad range of nonuniform distribution of eigenstrains exactly, but also has great implications in employing the equivalent inclusion method (EIM) to study the behavior of composites with functionally graded reinforcements. The paper is dedicated to professor Toshio Mura.  相似文献   

17.
We consider a time-dependent free boundary problem with radially symmetric initial data: σt − Δσ + σ = 0 if and σ(r,0)=σ0(r) in {r < R(0)} where R(0) is given. This is a model for tumor growth, with nutrient concentration (or tumor cells density) σ(r,t) and proliferation rate then there exists a unique stationary solution (σS(r), RS), where RS depends only on the number . We prove that there exists a number μ*, such that if μ < μ* . . . then the stationary solution is stable with respect to non-radially symmetric perturbations, whereas if μ > μ* then the stationary solution is unstable.  相似文献   

18.
Lagrangian time-scales in homogeneous non-Gaussian turbulence were studied using a one-dimensional Lagrangian Stochastic Model. The existence of two time-scales τ L and T L , one typical of the inertial subrange and the other which is an integral property, is outlined. Variations of the ratio T L L in the plane skewness-flatness (S, F) are shown and a connection with the statistical constraint FS 2 + 1 is evidenced. The Lagrangian autocorrelation function ρ(t) of particle velocity was computed for some values of (S, F). It is shown that for small times, say t < T L , the influence of non-Gaussianity is negligible and ρ(t) presents the same behaviour as in the Gaussian case regardless of variations in (S, F).As the time increases, departures from Gaussianity are observed and autocorrelation turns out to be always larger than in the Gaussiancase. This is supported by some considerations in terms of information entropy, which is shown to decrease with increasing departures from Gaussianity. Spectral analysis of Lagrangian velocity shows that non-Gaussianity is relevant only to large scales of the stochastic process and that the expected inertial subrange decay ω−2 is attained by spectra of all simulations, except for one case in which the model probability density function is bimodal, due to the vicinity to the statistical limit. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
We establish new properties of C 1[−1, +∞)-solutions of the linear functional differential equation (t) = ax(t) + bx(qt) + hx(t−1) + cẋ(qt) + rẋ(t−1) in the neighborhood of the singular point t = +∞. __________ Translated from Neliniini Kolyvannya, Vol. 9, No. 2, pp. 170–177, April–June, 2006.  相似文献   

20.
Our aim is to establish some sufficient conditions for the oscillation of the second-order quasilinear neutral functional dynamic equation
( p(t)( [ y(t) + r(t)y( t(t) ) ]D )g )D + f( t,y( d(t) ) = 0,    t ? [ t0,¥ )\mathbbT, {\left( {p(t){{\left( {{{\left[ {y(t) + r(t)y\left( {\tau (t)} \right)} \right]}^\Delta }} \right)}^\gamma }} \right)^\Delta } + f\left( {t,y\left( {\delta (t)} \right)} \right. = 0,\quad t \in {\left[ {{t_0},\infty } \right)_\mathbb{T}},  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号