首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Theoretical models for hydrated ions and their calculated effective dielectric constants obtained previously were used to explain the salting-in or salting-out of nonionic molecules. Three types of salting-out sequences were obtained: nonpolar (Na+ > K+ > Li+ Rb+ > Cs+), basic (K+ > Na+ > Rb+ > Cs+ > Li+), and acidic (Li+ > Na+ > K+ > Rb+ > Cs+). The nonpolar sequence is not influenced by the A region of a cation, and therefore the ability to salt-out is great if the effective dielectric constant of the ion is small. The A region on hydrated Li+ ions (the tightly bound water) salts-in basic compounds because of the interaction of its positively charged hydrogen atoms with the negative dipolar charge of the base. Conversely, the A region of a cation salts-out acidic compounds because the hydroxyl group on carboxylic acids behaves as a similar cationic A region. A sulfonic polymer will cause the salting-in of the base p-nitroaniline because the addition of salts to an aqueous solution of the base and polymer destroys hydrogen bonds in the polymer and in so doing releases hydronium ions from the polymer. This release of H+, in turn, produces a positive charge on part of the p-nitroaniline molecules, which produces a salting-in effect.  相似文献   

2.
Abstract Structures and complex-formation energies, calculated with DFT (B3LYP/LANL2DZp) for the cryptands [2.2.phen] and [2.phen.phen] with endohedrally complexed alkali and alkaline earth metal ions, were utilized to predict their ion selectivity. Both cryptands [2.2.phen] and [2.phen.phen] have a cavity size smaller than [2.2.2], [phen.phen.phen] and [bpy.bpy.bpy], and prefer to bind K+ and Sr2+, whereas [2.2.phen] that is larger than [2.phen.phen], has a preference for Ba2+, and [2.phen.phen] favours Na+ and Ca2+. The cryptand flexibility is mainly attributed to the presence of CH2–NSP3···NSP3–CH2 groups. Graphical abstract Host–Guest Complexes of mixed Glycol-Phenanthroline Cryptands—Prediction of Ion Selectivity by Quantum Chemical Calculations III Ralph Puchta* and Rudi van Eldik Keywords Cation selectivity Host–guest DFT DFT-studies allow a sensitive analysis of selectivity and cage size. Calculations predict a favourable binding of K+, Sr2+ and Ba2+ by [2.2.phen], and binding of K+, Na+, Ca2+ and Sr2+ by [2.phen.phen]. The cryptands fold around the ions by twisting their torsion angles in order to reach the best coordination mode for each cation. For “Prediction of ion selectivity by quantum chemical calculations III” see, R. Puchta, R. van Eldik. Aust. J. Chem. 60, 889–897 (2007).  相似文献   

3.
From extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium Cs+(aq) + A(aq) + 1(nb) ⇆ 1·Cs+(nb) + A (nb) taking part in the two-phase water–nitrobenzene system (A = picrate, 1 = hexaarylbenzene-based receptor; aq = aqueous phase, nb = nitrobenzene phase) was evaluated as log K ex (1·Cs+, A) = 2.8 ± 0.1. Further, the stability constant of the hexaarylbenzene-based receptor·Cs+ complex (abbrev. 1·Cs+) in nitrobenzene saturated with water was calculated for a temperature of 25 °C: log β nb (1·Cs+) = 4.7 ± 0.1. By using quantum mechanical DFT calculations, the most probable structure of the 1·Cs+ complex species was solved. In this complex having C 3 symmetry, the cation Cs+ synergistically interacts with the polar ethereal oxygen fence and with the central hydrophobic benzene bottom via cation–π interaction. Finally, the calculated binding energy of the resulting complex 1·Cs+ is −220.0 kJ/mol, confirming relatively high stability of the considered cationic complex species.  相似文献   

4.
The complexation reactions between dibenzo-24-crown-8 (DB24C8) and K+, Rb+, Cs+ and Tl+ ions were studied conductometrically in different acetonitrile–nitromethane mixtures at various temperatures. The formation constants of the resulting 1:1 complexes were calculated from the computer fitting of the molar conductance–mole ratio data at different temperatures. At 25 °C and in all solvent mixtures used, the stability of the resulting complexes varied in the order Tl+ > K+ > Rb+ > Cs+. The enthalpy and entropy changes of the complexation reactions were evaluated from the temperature dependence of formation constants. It was found that the stability of the resulting complexes increased with increasing nitromethane in the solvent mixture. The TΔS° vs. ΔH° plot of all thermodynamic data obtained shows a fairly good linear correlation indicating the existence of enthalpy–entropy compensation in the complexation reactions.  相似文献   

5.
From extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium Cs+ (aq) + A (aq) + 1(nb) \rightleftarrows \rightleftarrows 1·Cs+(nb) + A(nb) taking place in the two-phase water–nitrobenzene system (A = picrate, 1 = dibenzo-30-crown-10; aq = aqueous phase, nb = nitrobenzene phase) was evaluated as log K ex (1·Cs+, A) = 4.0 ± 0.1. Further, the stability constant of the 1·Cs+ complex in nitrobenzene saturated with water was calculated for a temperature of 25 °C: log β nb (1·Cs+) = 5.9 ± 0.1. Finally, by using quantum–mechanical DFT calculations, the most probable structure of the resulting cationic complex species 1·Cs+ was derived.  相似文献   

6.
A density functional theory based on interaction of alkali metal cations (Li+, Na+, K+, Rb+ and Cs+) with cyclic peptides constructed from 3 or 4 alanine molecule (CyAla3 and CyAla4), has been investigated using mixed basis set (C, H, O, Li+, Na+ and K+ using 6-31+G(d), and the heavier cations: Rb+ and Cs+ using LANL2DZ). The minimum energy structures, binding energies, and various thermodynamic parameters of free ligands and their metal cations complexes have been determined with B3LYP and CAM-B3LYP functionals. The order of interaction energies were found to be Li> K> Na> Rb> Cs+ and Li> Na> K? Rb> Cs+, calculated at CAM-B3LYP level for the M/CyAla3 and M/CyAla4 complexes, respectively. Their selectivity trend shows that the highest cation selectivity for Li+ over other alkali metal ions has been achieved on the basis of thermodynamic analysis. The main types of driving force host–guest interactions are investigated, the electron-donating O offers lone pair electrons to the contacting LP* of alkali metal cations.  相似文献   

7.
DFT (B3LYP functional) and MP2 methods using 6-311+G(2d,2p) basis set have been employed to examine the effect of ring fusion to benzene on the cation--π interactions involving alkali metal ions (Li+, Na+, and K+) and alkaline earth metal ions (Be2+, Mg2+ and Ca2+). Our present study indicates that modification of benzene (π-electron source) by fusion of monocyclic or bicyclic (or mixture of these two kinds of rings) strengthens the binding affinity of both alkali and alkaline earth metal cations. The strength of interaction decreases in the following order: Be2+ > Mg2+ > Ca2+ > Li+ > Na+ > K+ for any considered aromatic ligand. The interaction energies for the complexes formed by divalent cations are 4–6 times larger than those for the complexes involving monovalent cations. The structural changes in the ring wherein metal ion binds are examined. The distance between ring centroid and the metal ion is calculated for all of the complexes. Strained bicyclo[2.1.1]hexene ring fusion has substantially larger effect on the strength of cation--π interactions than the monocyclic ring fusion for all of the cations due to the π-electron localization at the central benzene ring.  相似文献   

8.
The extraction of micro amounts of cesium by nitrobenzene solutions of sodium, potassium and rubidium dicarbollylcobaltates (M+B;M+=Na+,K+,Rb+) has been investigated in the presence of 2,3-naphtho-15-crown-5 (N15C5, L). The equilibrium data were explained by assuming that ML+ and ML2+ complexes (M+=Na+,K+,Rb+, Cs+; L=N15C5) were present in the organic phase. The stability constants of the complex species ML+ and ML2+ have been determined in nitrobenzene saturated with water. It was found that the stability of the complex cation ML+ (where M+=Na+,K+,Rb+, Cs+; L=N15C5) in water-saturated nitrobenzene solutions increases along the series Cs+<Rb+<K+<Na+, whereas that of the species ML2+ in the same medium increases in the order Cs+<Rb+<Na+<K+.  相似文献   

9.
From extraction experiments and γ-activity measurements, the exchange extraction constant corresponding to the equilibrium Ag+(aq) + 1⋅Cs+(nb) ⇆ 1⋅Ag+(nb) + Cs+(aq) taking part in the two-phase water–nitrobenzene system (where 1 = hexaarylbenzene-based receptor; aq = aqueous phase, nb = nitrobenzene phase) was evaluated to be log 10 K ex(Ag+, 1⋅Cs+) = −1.0±0.1. Further, the stability constant of the hexaarylbenzene-based receptor⋅Ag+ complex (abbreviation 1⋅Ag+) in nitrobenzene saturated with water, was calculated at a temperature of 25 °C: log 10 β nb(1⋅Ag+) = 5.5±0.2. By using quantum mechanical DFT calculations, the most probable structure of the 1⋅Ag+ complex species was solved. In this complex having C3 symmetry, the cation Ag+ synergistically interacts with the polar ethereal oxygen fence and with the central hydrophobic benzene ring via cation–π interaction.  相似文献   

10.
Selectivity of Crystalline CeIV Phosphate Sulphate Hydrates for Li+, Na+, K+, Rb+, Cs+, and NH in Absolute Methanol and Absolute Dimethylsulphoxide The sequence of exchange capacities of Cerium(IV) phosphate sulphate hydrate (CePO4)2(HPO4)0.74(SO4)0.26 · 4,74 H2O for alkalimetal ions and ammoniumions in absolute methanol at 25°C for the case of a small excess of the exchanger (in relation to the equivalent amount) is given by K+ > Rb+ ≥ NH4+ > Cs+ > Na+ > Li+. Between the exchange capacity A of these cations and their ionic radii r (given by Ladd) exists the simple relation A = const./r. For Na+ the radius of the inner hydration shell must be considered. In absolute dimethyl-sulphoxide under the same conditions the sequence is K+ ≥ NH4 > Rb+ > Na+ > Cs+ > Li+. For K+, NH4, Rb+ and Cs+ the exchange capacity is given by A = const./r + const. · r4. The sequences of the alkali ions in both solvents are among the group of 13 sequences which are physicaly significant according to EISENMANNS 's theory. The results are compared with the observations made with water as solvent.  相似文献   

11.
In this study, calix[4]arene derivatives (1114) bearing a single nucleobase (adenine, thymine, cytosine or guanine) were synthesised via click chemistry. The complexation ability of the synthesised derivatives with alkali metal ions was measured using MALDI-TOF mass spectrometry, and their molecular assembly in CDCl3 was determined using 1H NMR. Calix[4]arene derivatives (1114) formed 1:1 complexes with all alkali metal ions and the rank order for the complexation selectivity was Rb+ > Cs+ > K+ ? Na+ > Li+. The attachment of nucleobase at the upper rim of calix[4]arene had little effect on its complexation selectivity for alkali metal ions. Thymine-, adenine- and guanine-calix[4]arenes formed self-assembled structures in CDCl3 via base–base interactions. In addition, adenine-calix[4]arene (11) bound to thymine-calix[4]arene (12) to form a discrete species via Hoogsteen hydrogen bonding.  相似文献   

12.
It is shown by means of IR. spectroscopic methods that nigericin and monensin have a cyclic conformation similar to that of their silver salts. Complex formation constants with sodium and potassium ions follow the selectivity order determined by EMF. measurements on liquid membranes: nigericin: K+ > Rb+ > Na+ > Cs+ > Li+; monensin: Na+ > K+ > Li+ > Rb+ > Cs+. Transport experiments show that nigericin and monensin facilitate the diffusion of potassiumions across model membranes, although in electrolytic transport experiments the permeability is not affected.  相似文献   

13.
A new ditopic ion‐pair receptor 1 was designed, synthesized, and characterized. Detailed binding studies served to confirm that this receptor binds fluoride and chloride ions (studied as their tetraalkylammonium salts) and forms stable 1:1 complexes in CDCl3. Treatment of the halide‐ion complexes of 1 with Group I and II metal ions (Li+, Na+, K+, Cs+, Mg2+, and Ca2+; studied as their perchlorate salts in CD3CN) revealed unique interactions that were found to depend on both the choice of the added cation and the precomplexed anion. In the case of the fluoride complex [ 1? F]? (preformed as the tetrabutylammonium (TBA+) complex), little evidence of interaction with the K+ ion was seen. In contrast, when this same complex (i.e., [ 1? F]? as the TBA+ salt) was treated with the Li+ or Na+ ions, complete decomplexation of the receptor‐bound fluoride ion was observed. In sharp contrast to what was seen with Li+, Na+, and K+, treating complex [ 1? F]? with the Cs+ ion gave rise to a stable, receptor‐bound ion‐pair complex [Cs ?1? F] that contains the Cs+ ion complexed within the cup‐like cavity of the calix[4]pyrrole, which in turn was stabilized in its cone conformation. Different complexation behavior was observed in the case of the chloride complex [ 1? Cl]?. In this case, no appreciable interaction was observed with Na+ or K+. In addition, treating [ 1? Cl]? with Li+ produces a tightly hydrated dimeric ion‐pair complex [ 1? LiCl(H2O)]2 in which two Li+ ions are bound to the crown moiety of the two receptors. In analogy to what was seen in the case of [ 1? F]?, exposure of [ 1? Cl]? to the Cs+ ion gives rise to an ion‐pair complex [Cs ?1? Cl] in which the cation is bound within the cup of the calix[4]pyrrole. Different complexation modes were also observed when the binding of the fluoride ion was studied by using the tetramethylammonium and tetraethylammonium salts.  相似文献   

14.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+ (aq) + 1·Na+ (nb) ⇔ 1·M+ (nb) + Na+ (aq) taking place in the two-phase water–nitrobenzene system (M+ = Li+, H3O+, NH4 + {\rm NH}_{4}^{ + } , Ag+, K+, Rb+, Tl+, Cs+; 1 = barium ionophore I; aq = aqueous phase, nb = nitrobenzene phase) were determined. Furthermore, the stability constants of the 1·M+ complexes in water-saturated nitrobenzene were calculated; they were found to increase in the series of Cs+ < Rb+ < NH4 + {\rm NH}_{4}^{ + } , K+ < H3O+ < Na+ < Ag+, Tl+ < Li+.  相似文献   

15.
A new calixcrown‐6 oligomer 5 was synthesized by reacting a 1,3‐distal di‐amino derivative of cone p‐tert‐butylcalix[4]crown‐6 with malonyl dichloride. Extraction studies with precursor monomers 2 and 3 and oligomer 5 showed differences in their metal cation extraction behavior and selectivity. Precursors monomers 2 and 3 were selective for Hg2+; whereas, oligomer 5 showed high affinity towards both alkali (Li+, Na+, K+, and Cs+) and heavy metal cations (Cu2+, Cd2+, Hg2+ and Pb2+).  相似文献   

16.
The complex forming properties with alkali metal and ammonium ions of a series of oligo benzo-condensed 18-crown-6 ethers1–8 having a different gradation of lipophilicity and of molecular rigidity are investigated by voltammetry at the interface of two immiscible electrolyte solutions (ITIES) and by a liquid-liquid extraction technique. The experimental results obtained in the two phase system H2O/nitrobenzene are discussed in relation to the structure of the crown and the cation type. The stability constants for the 1 : 1 complexes of Na+, K+, Rb+, Cs+ and NH 4 + in nitrobenzene have been determined and compared with the extraction constants for the 1: 1 complexes of Na+ and K+ and for the 1 : 1 and 1 : 2 complexes of Cs+, showing the effect of oligo benzo condensation for the 18-crown-6 system.  相似文献   

17.
The structure of aqua complexes of alkali metal ions Me+(H2O) n , n = 1−6, where Me is Li, Na, K, Rb, and Cs, and complexes of 2,6-dimethylphenolate anion (CH3)2PhO selected as a model of the elementary unit of phenol-formaldehyde ion exchanger with hydrated alkali metal cations Me+(H2O) n , n = 0−5, was studied by the density functional method. The energies of successive hydration of the cations and the energies of binding of alkali metal hydrated cations with (CH3)2PhO depending on the number of water molecules n were calculated. It was shown that the dimethylphenolate ion did not have specific selectivity with respect to cesium and rubidium ions. The energies of hydration and the energies of binding of alkali metal cations with (CH3)2PhO decreased in the series Li+ > Na+ > K+ > Rb+ > Cs+ as n increased. The conclusion was drawn that the reason for selectivity of phenol-formaldehyde and other phenol compounds with respect to cesium and rubidium ions was the predomination of the ion dehydration stage in the transfer from an aqueous solution to the phenol phase compared with the stage of binding with ion exchange groups.  相似文献   

18.
The binding sites and consecutive binding constants of alkali metal ions, (M+ = Na+, K+, Rb+, and Cs+), to thrombin-binding aptamer (TBA) DNA were studied by Fourier-transform ion cyclotron resonance spectrometry. TBA-metal complexes were produced by electrospray ionization (ESI) and the ions of interest were mass-selected for further characterization. The structural motif of TBA in an ESI solution was checked by circular dichroism. The metal-binding constants and sites were determined by the titration method and infrared multiphoton dissociation (IRMPD), respectively. The binding constant of potassium is 5–8 times greater than those of other alkali metal ions, and the potassium binding site is different from other metal binding sites. In the 1:1 TBA-metal complex, potassium is coordinated between the bottom G-quartet and two adjacent TT loops of TBA. In the 1:2 TBA—metal complex, the second potassium ion binds at the TGT loop of TBA, which is in line with the antiparallel G-quadruplex structure of TBA. On the other hand, other alkali metal ions bind at the lateral TGT loop in both 1:1 and 1:2 complexes, presumably due to the formation of ion-pair adducts. IRMPD studies of the binding sites in combination with measurements of the consecutive binding constants help elucidate the binding modes of alkali metal ions on DNA aptamer at the molecular level.  相似文献   

19.
Water self-diffusion and ion mobilities in various ionic forms (H+, Li+, Na+, Rb+, Cs+, and Ba2+) of perfluorinated sulfocationic membranes MF-4SK were studied by NMR and impedance spectroscopy. When degrees of hydration are low, the self-diffusion coefficients of water and ionic conductivities are considerably affected by the water content of the membrane. The self-diffusion coefficients decrease in the order H+ > Ba2+ > Cs+ > Rb+ > Na+ > Li+, whereas the ion mobility decreases in the order H+ > Li+ > Na+ > Cs+ > Ba2+.  相似文献   

20.
The equilibrium in the system water—electrolyte—cross-linked polymer containing immobilized 2,8,14,20-tetramethyl-4,6,10,12,16,18,22,24-octahydroxycalix[4]arene was studied. Immobilized calixarene 1 was shown to form 1∶1, 1∶2, 1∶3, and 1∶4 compounds with inorganic cations (Na+, Cs+, and NH4 +), and with organic cations (hexamethylen-tetramine and β-diethylaminoethylp-aminobenzoate) 1∶1 compounds are formed. The affinity of immobilized calixarene1 increases in the series of cations: hexamethylenetetramine <Na+, Cs+, NH4 +<β-diethylaminoethylp-aminobenzoate. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2214–2216, November, 1998.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号