首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Au(I) and Ag(I) closed-shell metal dimers of 2-(diphenylphosphino)-1-methylimidazole, dpim, were investigated. dpim formed the discreet binuclear species [Ag2(dpim)2(CH3CN)2](2+) (1) when reacted with appropriate Ag(I) salts. Likewise, [Au2(dpim)2](2+) (3) and [AuAg(dpim)3](2+) (4) were produced via reactions with (tht)AuCl, tht is tetrahydrothiophene, and Ag(I). Compound 3 exhibits an intense blue luminescence (lambdamax=483 nm) in the solid state. However, upon initial formation of 3, a small impurity of Cl- was present giving rise to an orange emission (lambdamax=548 nm). Attempts to form [Au2(dpim)2]Cl2 yielded only (dpim)AuCl (2), which is not visibly emissive. The rare three-coordinate heterobimetallic complex [AuAg(dpim)3](2+) (4) exhibits intense luminescence in the solid-state resembling that of 3. The crystal structures of 1-4 were determined, revealing strong intramolecular aurophilic and argentophilic interactions in the dimeric compounds. Compound 1 has an Ag(I)-Ag(I) separation of 2.9932(9) A, while compound 3 has a Au(I)-Au(I) separation of 2.8174(10) A. Compound 4 represents the first example of a three-coordinate Au(I)-Ag(I) dimer and has a metal-metal separation of 2.8635(15) A. The linear Au(I) monomer, 2, has no intermolecular Au(I)-Au(I) interactions, with the closest separation greater than 6.8 A.  相似文献   

2.
DFT calculations were used to optimize the phosphorescent excited state of three-coordinate [Au(PR3)3]+ complexes. The results indicate that the complexes rearrange from their singlet ground-state trigonal planar geometry to a T-shape in the lowest triplet luminescent excited state. The optimized structure of the exciton contradicts the structure predicted based on the AuP bonding properties of the ground-state HOMO and LUMO. The rearrangement to T-shape is a Jahn-Teller distortion because an electron is taken from the degenerate e' (5dxy, 5dx2-y2) orbital upon photoexcitation of the ground-state D3h complex. The calculated UV absorption and visible emission energies are consistent with the experimental data and explain the large Stokes' shifts while such correlations are not possible in optimized models that constrained the exciton to the ground-state trigonal geometry.  相似文献   

3.
The Au(I)–Au(I) closed‐shell or aurophilic attraction has been the subject of interest in the experimental and theoretical chemistry fields, due to the intriguing properties associated to it. The presence of phosphorescence in “aurophilic” compounds has been addressed to a wide range of applications, but it has not yet been fully understood. A theoretical study on the electronic and phosphorescent properties of the following series of dinuclear gold complexes has been performed: [Au2(dmpm) (i‐mnt)] ( 1 ), [Au2(μ‐Me‐TU) (μ‐dppm)] ( 2 ), and [Au2(μ‐G)(μ‐dmpe)] ( 3 ). Full geometry optimizations at the second‐order Møller–Plesset perturbation theory (MP2) were carried out for each of the species. These calculations made evident that, at the ground‐state geometry, the Au(I) cations allocated at the center of the ring show a short Au–Au distance below the sum of the van der Waals radii, at the range of the aurophilic attraction. An intermolecular Au(I)–Au(I) closed‐shell attraction for a pair of the systems under study is found. This attraction is comparable to that of the hydrogen bonds. The phosphorescent properties experimentally observed for this series were also characterized through ab initio techniques. The obtained results allow to fit reasonably the excitation energies with the experimental data and to identify a correlation between the strength of the Au(I)–Au(I) interaction and the phosphorescent behavior. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

4.
Numerous reports describe the photoluminescence of two- and three-coordinate gold(I)-phosphine complexes, but emission in their analogous four-coordinate complexes is almost unknown. This work examines the luminescence of tetrahedral gold(I) complexes of the types [Au(diphos)(2)]PF(6) (diphos = 1,2-bis(diphenylphosphino)ethane, 1) and [Au(2)(tetraphos)(2)](PF(6))(2) (tetraphos = (R,R)-(+/-)/(R,S)-1,1,4,7,10,10-hexaphenyl-1,4,7,10-tetraphosphadecane, (R,R)-(+/-)/(R,S)-2). Although nonemitting in solution, these complexes luminesce with an intense yellow color (lambda(max) 580-620 nm) at 293 K in the solid state or when immobilized as molecular dispersions within solid matrixes. The excited-state lifetimes of the emissions (tau 4.1-9.4 micros) are markedly dependent on the inter- and intramolecular phenyl-phenyl pairing interactions present. At 77 K in an ethanol glass, two transitions are observed: a minor emission at lambda(max) 415-450 nm and a major emission at lambda(max) 520-595 nm. For [Au(1)(2)]PF(6), lifetimes of tau 251.0 +/- 20.5 micros were determined for the former transition and tau 14.9 +/- 4.6 micros for the latter. Density functional theory (DFT) calculations and comparative studies indicate that the former of these emissions involves triplet LMCT pi(Ph) --> Au(d)-P(p) transitions associated with individual P-phenyl groups. The latter emissions, which are the only ones observed at 293 K, are assigned to LMCT pi(Ph-Ph) --> Au(d)-P(p) transitions associated with excited P-phenyl dimers. Other tetrahedral gold(I)-phosphine complexes containing paired P-Ph substituents display similar emissions. The corresponding phosphine ligands, whether free, protonated, or bound to Ag(I), do not exhibit comparable emissions. Far from being rare, luminescence in four-coordinate Au(I)-phosphine complexes appears to be general when stacked P-phenyl groups are present.  相似文献   

5.
By reaction of NBu(4)[Au(C(6)Cl(5))(2)] with TlPF(6) in acetone the complex [Au(2)Tl(2)(C(6)Cl(5))(4)].(CH(3))(2)C=O is obtained, which shows a butterfly type arrangement of metals through short Au(I)-Tl(I) and Tl(I)-Tl(I) interactions. The last one is likely to be responsible for its luminescence behavior.  相似文献   

6.
Chen YD  Zhang LY  Qin YH  Chen ZN 《Inorganic chemistry》2005,44(18):6456-6462
Polynuclear heterovalent Au(III)-M(I) (M = Cu, Ag, Au) cluster complexes [Au(III)Cu(I)8(mu-dppm)3(tdt)5]+ (1), [Au(III)3Ag(I)8(mu-dppm)4(tdt)8]+ (2), and [Au(III)Au(I)4(mu-dppm)4(tdt)2]3+ (3) were prepared by reaction of [Au(III)(tdt)2]- (tdt = toluene-3,4-dithiolate) with 2 equiv of [M(I)2(dppm)2]2+ (dppm = bis(diphenylphosphino)methane). Complex 3 originates from incorporation of one [Au(III)(tdt)2]- with two [Au(I)2(dppm)2]2+ components through Au(III)-S-Au(I) linkages. Formation of complexes 1 and 2, however, involves rupture of metal-ligand bonds in the metal components and recombination between the ligands and the metal atoms. The Au(tdt)2 component connects to four M(I) atoms through Au(III)-S-M(I) linkages in syn and anti conformations in complexes 1 (M = Cu) and 3 (M = Au), respectively, but in both syn and anti conformations in complex 2 (M = Ag). The tdt ligand exhibits five types of bonding modes in complexes 1-3, chelating Au(III) or M(I) atoms as well as bridging Au(III)-M(I) or M(I)-M(I) atoms in different orientations. Although complexes 1 and 2 are nonemissive, Au(III)Au(I)(4) complex 3 shows room-temperature luminescence with emission maximum at 555 nm (tau(em) = 3.1 micros) in the solid state and at 570 nm (tau(em) = 1.5 micros) in acetonitrile solution.  相似文献   

7.
Chen JX  Zhang WH  Tang XY  Ren ZG  Li HX  Zhang Y  Lang JP 《Inorganic chemistry》2006,45(19):7671-7680
The reaction of AuI with 2 equiv of TabHPF6 [TabH = 4-(trimethylammonio)benzenethiol] in the presence of excess Et3N in dimethylformamide (DMF)/MeOH afforded a binuclear gold(I) complex [Au(Tab)2]2I2.2H2O (1). Anion exchange of 1 with NH4PF6 in DMF gave rise to the more soluble complex [Au(Tab)2]2(PF6)2 (2). Treatment of 2 with K[Au(CN)2] produced a tetranuclear gold(I) complex {[(Tab)2Au][Au(CN)2]}2 (3). Analogous reactions of two known mononuclear complexes [Ag(Tab)2](PF6) (4) and [Hg(Tab)2](PF6)2 (5) with 1 or 2 equiv of K[Au(CN)2] generated one Ag2Au2 complex {[(Tab)2Ag][Au(CN)2]}2 (6) and one Au/Hg complex {[Hg(Tab)2][Au(CN)2]2} (7), respectively. Compounds 1-3, 6, and 7 were fully characterized by elemental analysis, IR spectra, UV-vis spectra, 1H NMR, and single-crystal X-ray crystallography. 1 and 2 have a similar [Au(Tab)2]2(2+) dimeric structure in which the two [Au(Tab)2]+ cations are connected via one Au-Au aurophilic interaction. In the structure of 3 or 6, each of the two pairs of [M(Tab)2]+ cation and [Au(CN)2]- anion is held together via ionic interactions to form a {[(Tab)2M][Au(CN)2]} species (M = Au, 3; Ag, 6). Two such species are further connected by one Au-Au aurophilic bonding interaction to form an uncommon Au(4) or Ag2Au2 linear string structure with three ligand-unsupported metal-metal bonds. For 7, the [Hg(Tab)2]2+ dication and the [Au(CN)2]2(2-) dianion are interconnected by the secondary Hg...N(CN) interactions to form a 1D chain structure. The thermal and luminescent properties of 1-3, 6, and 7 in solid state were also investigated.  相似文献   

8.
This paper reports on the synthesis, X-ray structure, magnetic properties, and DFT calculations of [[HC(CMeNAr)2]Mn]2 (Ar = 2,6-iPr2C6H3) (2), the first complex with three-coordinate manganese(I). Reduction of the iodide [[HC(CMeNAr)2]Mn(mu-I)]2 (1) with Na/K in toluene afforded 2 as dark-red crystals. The molecule of 2 contains a Mn2(2+) core with a Mn-Mn bond. The magnetic investigations show a rare example of a high-spin manganese(I) complex with an antiferromagnetic interaction between the two Mn(I) centers. The DFT calculations indicate a strong s-s interaction of the two Mn(I) ions with the open shell configuration (3d54s1). This suggests that the magnetic behavior of 2 could be correctly described as the coupling between two S1 = S2 = 5/2 spin centers. The Mn-Mn bond energy is estimated at 44 kcal mol(-1) by first principle calculations with the B3LYP functional. The further oxidative reaction of 2 with KMnO4 or O2 resulted in the formation of manganese(III) oxide [[HC(CMeNAr)2]Mn(mu-O)]2 (3). Compound 3 shows an antiferromagnetic coupling between the two oxo-bridged manganese(III) centers by magnetic measurements.  相似文献   

9.
A Cd(II)-nitronyl nitroxide radical complex with dicyanoaurate(I) bridges [Cd(NIT4Py)2][Au(CN)2]2, was synthesized and characterized by elemental analyses, IR spectrum and X-ray diffraction single-crystal structure analysis. Crystal data for the complex: triclinic, space group P1, a=0.720 9(11) nm, b=0.960 3(15) nm, c=1.284(2) nm, α=75.38(2)°, β=85.46(2)°, γ=68.38(2)°, V=0.800(2) nm3, Z=1, and R1 [I>2σ(I)]=0.055 8. The title complex consists of infinite one-dimensional chains of [Cd(NIT4Py)2][Au(CN)2]2, in which [Cd(NIT4Py)2] moieties are conne-cted by [Au(CN)2]- μ2-bridging ligands. Each cadmium(II) ion is six-coordinated in a distorted and centrosymmetric octahedral environment. CCDC: 258357.  相似文献   

10.
Electronic structures and spectroscopic properties of the binuclear head-to-tail [Au(2)(PH(2)CH(2)SH)(2)](2+) (1) complex were investigated by ab initio calculations. The solvent effect of the complex in the acetonitrile solution was taken into account by the weakly solvated [Au(2)(PH(2)CH(2)SH)(2)](2+).(MeCN)(2) (2) moiety in the calculations. The ground-state geometries of 1 and 2 were fully optimized by the MP2 method, while their excited-state structures were optimized by the CIS method. Aurophilic attraction apparently exists between the two Au(I) atoms in the ground state and is strongly enhanced in the excited state. A high-energy phosphorescent emission was calculated at 337 nm for 1 in the absence of the interactions with solvent molecules and/or counteranion in solid state; however the lowest-energy emission of 2 was obtained at 614 nm with the nature of (3)A(u)(s(sigma)) --> (1)A(g)(d(sigma)) (metal-centered, MC) transition. The coordination of acetonitrile to the gold atom in solution results in a dramatic red shift of emission wavelength. The investigations on the head-to-tail [Au(2)(PH(2)CH(2)SCH(3))(2)](2+) (5) and [Au(2)(PH(2)CH(2)SCH(3))(2)](2+).(MeCN)(2) (6) moieties indicate that the CH(3) substituent on the S atom causes blue shifts of emission wavelength for 5 and 6 with respect to 1 and 2. By comparison between Au(I) thioether 1 and head-to-tail Au(I) thiolate [Au(2)(PH(2)CH(2)S)(2)] (7), it is concluded that the S-->Au dative bonding results in evidently different transition characteristics from the S-Au covalent bonding in the Au(I) thioether/thiolate complexes.  相似文献   

11.
Flores JA  Dias HV 《Inorganic chemistry》2008,47(11):4448-4450
A rare gold(I) ethylene complex and the closely related copper(I) ethylene adduct have been isolated using [N{(C3F7)C(2,6-Cl2C6H3)N}2]- as the supporting ligand. [N{(C3F7)C(2,6-Cl2C6H3)N}2]Au(C2H4) (1) is an air-stable solid. It features a U-shaped triazapentadienyl ligand backbone and a three-coordinate, trigonal-planar gold center. The copper(I) adduct [N{(C3F7)C(2,6-Cl2C6H3)N}2]Cu(C2H4) (2) also has a similar structure. The 13C NMR signal corresponding to the ethylene carbons of 1 appears at about 64 ppm upfield from the free ethylene, while the ethylene carbons of 2 show a relatively smaller (39 ppm) upfield shift. [N{(C3F7)C(2,6-Cl2C6H3)N}2]M(C2H4) (M=Cu, Au) mediate carbene-transfer reactions from ethyl diazoacetate to saturated and unsaturated hydrocarbons.  相似文献   

12.
The dinuclear Au(I) amidinate complex Au2(2,6-Me2Ph-form)2 (1) is isolated in quantitative yield by the reaction of (THT)AuCl and the potassium salt of 2,6-Me2Ph-form in a 1:1 stoichiometric ratio. Various reagents such as Cl2, Br2, I2, CH3I, and benzoyl peroxide add to the dinuclear Au(I)amidinate complex Au2(2,6-Me2Ph-form)2 to form oxidative-addition Au(II) metal-metal-bonded complexes 2, 3, 4, 5, and 6. The Au(II) amidinate complexes are stable as solids at room temperature. The structures of the dinuclear Au2(2,6-Me2Ph-form)2 and the Au(II) oxidative-addition products Au2(2,6-Me2Ph-form)2X2, X=Cl, Br, I, are reported. Crystalline products with an equal amount of oxidized and unoxidized complexes in the same unit cell, [Au2(2,6-Me2Ph-form)2X2][Au2(2,6-Me2Ph-form)2], X=Cl, 2m, or Br, 3m, are isolated and their structures are presented. The structure of [Au2(2,6-Me2Ph-form)2X2][Au2(2,6-Me2Ph-form)2], X=Cl has a Au(II)-Au(II) distance slightly longer, 0.05A, than that observed in the fully oxidized product Au2(2,6-Me2-form)2Cl2, 2. The gold-gold distance in the dinuclear complex decreases upon oxidative addition with halogens from 2.7 to 2.5 A, similar to observations made with the Au(I) dithiolates and ylides. The oxidative addition of benzoyl peroxide leads to the isolation of the first stable dinuclear Au(II) nitrogen complex possessing Au-O bonds, Au2(2,6-Me2Ph-form)2(PhCOO)2, 6, with the shortest Au-Au distance known for Au(II) amidinate complexes, 2.48 A. The structure consists of unidentate benzoate units linked through oxygen to the Au(II) centers. The replacement of the bromide in 3 by chloride, and the benzoate groups in 6 by chloride or bromide also occurs readily. The unit cell dimensions are, for 1, a=7.354(6) A, b=9.661(7) A, c=11.421(10) A, alpha=81.74(5) degrees, beta=71.23(5) degrees, and gamma=86.07(9) degrees (space group P, Z=1), for 2.1.5C6H12, a=11.012(2) A, b=18.464(4) A, c=19.467(4) A, alpha=90 degrees, beta=94.86(3) degrees, and gamma=90 degrees (space group P21/c, Z=4), for 2m.ClCH2CH2Cl, a=16.597(3) A, b=10.606(2) A, c=19.809(3) A, alpha=90 degrees, beta=94.155(6) degrees, and gamma=90 degrees (space group P21/n, Z=2), for 3m, a=16.967(3) A, b=10.783(2) A, c=20.060(4) A, alpha=90 degrees, beta=93.77(3) degrees, and gamma=90 degrees (space group P21/n, Z=2), for 4.THF, a=8.0611(12) A, b=10.956(16) A, c=11.352(17) A, alpha=84.815(2) degrees, beta=78.352(2) degrees, and gamma=88.577(2) degrees (space group P, Z=1), for 5, a=16.688 A, b=10.672(4) A, c=19.953(7) A, alpha=90.00 (6) degrees, beta=94.565(7) degrees, and gamma=90.00 degrees (space group P21/n, Z=4), for 6.0.5C7H8, a=11.160(3) A, b=12.112(3) A, c=12.364(3) A, alpha=115.168(4) degrees, beta=161.112(4) degrees, and gamma=106.253(5) degrees (space group P, Z=1).  相似文献   

13.
The reaction of the complex [Au2Ag2(C6F5)4)N[triple bond]CCH3)2]n (1) with 1 equiv of CuCl in the presence of 1 equiv of pyrimidine ligand leads to the formation of the heteronuclear Au(I)-Cu(I) organometallic polymer [Cu{Au(C6F5)2}(N[triple bond]CCH3)(mu2-C4H4N2)]n (2) through a transmetalation reaction. Complex 2 displays unprecedented unsupported Au(I)...Cu(I) interactions of [Au(C6F5)2]- units with the acid Cu(I) sites in a [Cu(N[triple bond]CCH3)(mu2-pyrimidine)]n+(n) polymeric chain. Complex 2 has a rich photophysics in solution and in the solid state.  相似文献   

14.
Two polymorphs of an [Au(CN)2]-based coordination polymer, Cu[Au(CN)2]2(DMSO)2, one green (1) and one blue (2), have been identified. In polymorph 1, alternation of five-coordinate Cu(II) and [Au(CN)2]- units generates 1-D chains, while 2-D corrugated sheets are obtained in polymorph 2, which contains six-coordinate Cu(II) centers. Both polymorphs form 3-D networks by virtue of aurophilic interactions of 3.22007(5) A and 3.419(3) A, respectively, and show similar weak antiferromagnetic coupling, but have different thermal decomposition temperatures. They both show vapochromic properties and, importantly, despite their significantly different solid-state structures, the vapochromic behavior of the two polymorphs is essentially identical. Upon solvent exchange, both polymorphs convert to the same Cu[Au(CN)2]2(solvent)x complex (solvent = H2O, CH3CN, dioxane, N,N-dimethylformamide, pyridine, NH3). The Cu[Au(CN)2]2(DMF) and Cu[Au(CN)2]2(pyridine)2 complexes have very similar 2-D square grid structures, comparable to that of 2. The solvent molecules adsorbed by Cu[Au(CN)2]2 bind to the Cu(II) centers, thereby altering the visible spectrum associated with the Cu(II) chromophores and the number and frequency of the nu(CN) as well. The network-stabilizing gold-gold interactions and the flexible coordination sphere of Cu(II) probably facilitate reversible solvent exchange at room temperature.  相似文献   

15.
Gold(I) complexes, enabling to form linear coordination geometry, are promising materials for manifesting both aggregation-induced emission (AIE) behavior due to strong intermolecular Au–Au (aurophilic) interactions and liquid crystalline (LC) nature depending on molecular geometry. In this study, we synthesized several gold(I) complexes with rod-like molecular skeletons where we employed a mesogenic biphenylethynyl ligand and an isocyanide ligand with flexible alkoxyl or alkyl chains. The AIE behavior and LC nature were investigated experimentally and computationally. All synthesized gold(I) complexes exhibited AIE properties and, in crystal, room-temperature phosphorescence (RTP) with a relatively high quantum yields of greater than 23% even in air. We have demonstrated that such strong RTP are drastically changed depending on the crystal-size and/or crystal growth process that changes quality of crystals as well as the aggregate structure, of e.g., Au–Au distance. Moreover, the complex with longer flexible chains showed LC nature where RTP can be observed. We expect these rod-like gold(I) complexes to have great potential in AIE-active LC phosphorescent applications such as linearly/circularly polarizing phosphorescence materials.  相似文献   

16.
The anion [Au2(CS3)2]2- has an unusually short Au-Au distance (2.80 A) for a binuclear Au(I) complex. We report detailed Raman studies of the nBu4N+ salt of this complex, including FT-Raman of the solid and UV/vis resonance Raman of dimethyl sulfoxide solutions. All five totally symmetric vibrations of the anion have been located and assigned. A band at delta nu = 125 cm-1 is assigned to nu (Au2). The visible-region electronic absorption bands (384 (epsilon 30,680) and 472 nm (epsilon 610 M-1 cm-1)) are attributable to CS3(2-) localized transitions, as confirmed by the dominance of nu sym(C-Sexo) (delta nu = 951 cm-1) in RR spectra measured in this region. An absorption band at 314 nm (22,250 M-1 cm-1) is assigned as the metal-metal 1(d sigma*-->p sigma) transition, largely because nu sym(C-Sexo) is not strongly enhanced in RR involving this band. Observation of the expected strong resonance enhancement of nu (Au2) was precluded as a result of masking by intense solvent Rayleigh scattering in the UV.  相似文献   

17.
The complexation properties of the ligand bis(3,5-dimethylpyrazol-1-yl)methane (L) towards group 11 metals have been studied. The reaction in a 1 : 1 molar ratio with [Cu(NCMe)4]PF6 or Ag(OTf) complexes gives the mononuclear [CuL(NCMe)]PF6 (1), with crystallographic mirror symmetry, or dinuclear [Ag2(mu-L)2](OTf)2 (2) (OTf = trifluoromethanesulfonate) in which the ligand bridges both silver centres, an unprecedented mode of coordination for this type of ligands. Compound 2 crystallizes with two water molecules and forms a supramolecular structure through classical hydrogen bonding. The reaction in a 2 : 1 ratio affords in both cases the four-coordinated derivatives [ML2]X (M = Cu, X = PF6 (3); Ag, X = OTf 4). The treatment of [Ag(OTf)(PPh3)] with the ligand L gives [AgL(PPh3)]OTf (5). The gold(I) derivative [Au2(C6F5)2(mu-L)] (6) has also been obtained by reaction of L with two equivalents of [Au(C6F5)(tht)]. These complexes present a luminescent behaviour at low temperature; the emissions being mainly intraligand but enhanced after coordination of the metal. Compounds 1-4 have been characterized by X-ray crystallography. DFT studies showed that, in the silver complex 2, coordination of H2O to Ag in the binuclear complex is favoured by formation of a hydrogen-bonding network, involving the triflato anion, and releasing enough energy to allow distortion of the Ag2 framework.  相似文献   

18.
Mori S  Osuka A 《Inorganic chemistry》2008,47(10):3937-3939
Au(III)Cu(III) and Au(III)Rh(I) heterobismetal complexes of meso-aryl-substituted [26]hexaphyrin were rationally prepared from a monometal Au(III) complex. The Au(III)Cu(III) complex is an aromatic molecule with a rectangular shape, while Au(III)Rh(I) complexes are out-of-plane macrocycles, being either aromatic or antiaromatic depending upon the number of conjugated pi electrons. The 26pi Au(III)Rh(I) complex was converted into an aromatic and planar 26pi Au(III)Rh(III) complex via double C-H bond activation upon refluxing in pyridine.  相似文献   

19.
The symmetric digold(II)dichloride bis(ylide) complex [Au2Cl2(mu-{CH2}2PPh2)2] reacts with acetylides to form the asymmetric heterovalent gold(I)/gold(III) complexes [AuI(mu-{CH2}2PPh2)2AuIII(CCR)2] [R = Ph, tBu, and SiMe3], the phenyl analogue of which was characterized by X-ray crystallography. These compounds represent the first examples of gold(III) complexes containing two acetylide ligands. [AuI(mu-{CH2}2PPh2)2AuIII(CCPh)2] undergoes a reversible comproportionation reaction upon treatment with [Ag(ClO4)tht] to give the symmetric digold(II) cationic complex [Au2(tht)2(mu-{CH2}2PPh2)2](ClO4)2. If this complex is treated with phenylacetylene in the presence of base, the heterovalent gold(I)/gold(III) complex is re-formed. This reversible interconversion between binuclear gold(I)/gold(III) and digold(II) bis(ylide) complexes is unprecedented.  相似文献   

20.
A series of Re(I) complexes, [Re(CO)(3)Cl(HPB)] (1), [Re(CO)(3)(PB)H(2)O] (2), [Re(CO)(3)(NO(3))(PB-AuPPh(3))] (3), and [Re(CO)(3)(NO(3))(PB)Au(dppm-H)Au](2) (4) [HPB = 2-(2'-pyridyl)benzimidazole; dppm = 2,2'-bis(diphenylphosphinomethane)], have been synthesized and characterized by X-ray diffraction. Complex 1, which exhibits interesting pH-dependent spectroscopic and luminescent properties, was prepared by reacting Re(CO)(5)Cl with an equimolar amount of 2-(2'-pyridyl)benzimidazole. The imidazole unit in complex 1 can be deprotonated to form the imidazolate unit to give complex 2. Addition of 1 equiv of AuPPh(3)(NO(3)) to complex 2 led to the formation of a heteronuclear complex 3. Addition of a half an equivalent of dppm(Au(NO(3)))(2) to complex 2 yielded 4. In both 3 and 4, the imidazolate unit acts as a multinuclear bridging ligand. Complex 4 is a rare and remarkable example of a Re(2)Au(4) aggregate in combination with μ(3)-bridging 2-(2'-pyridyl)benzimidazolate. Finally, complex 2 has been used to examine the Hg(2+)-recognition event among group 12 metal ions. Its reversibility and selectivity toward Hg(2+) are also examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号