首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetically encoded (GE) contrast agents detectable by magnetic resonance imaging (MRI) enable non-invasive visualization of gene expression and cell proliferation at virtually unlimited penetration depths. Using hyperpolarized 129Xe in combination with chemical exchange saturation transfer, an MR contrast approach known as hyper-CEST, enables ultrasensitive protein detection and biomolecular imaging. GE MRI contrast agents developed to date include nanoscale proteinaceous gas vesicles as well as the monomeric bacterial proteins TEM-1 β-lactamase (bla) and maltose binding protein (MBP). To improve understanding of hyper-CEST NMR with proteins, structural and computational studies were performed to further characterize the Xe-bla interaction. X-ray crystallography validated the location of a high-occupancy Xe binding site predicted by MD simulations, and mutagenesis experiments confirmed this Xe site as the origin of the observed CEST contrast. Structural studies and MD simulations with representative bla mutants offered additional insight regarding the relationship between local protein structure and CEST contrast.  相似文献   

2.
The kinetics of gas --> channel and channel --> gas exchange of Xe in self-assembled L-alanyl-L-valine (AV) nanotubes was facilitated by continuous flow hyperpolarized xenon-129 two-dimensional exchange NMR spectroscopy. Cross-peaks due to gas atoms entering or exiting were observed at Xe pressures of 92, 1320, and 3300 mbar, corresponding to Xe fractional occupancies ranging from 0.047 to 0.64. At each pressure, the rate of desorption from the channels was determined by fitting the mixing time dependence of the cross-peak and diagonal-peak signals to a magnetization exchange model, assuming steady-state Langmuir adsorption under hyperpolarized gas flow conditions. The observed rate constant for desorption of Xe from AV nanotubes decreased from 4.5 s-1 to 2.0 s-1 over the occupancy range studied, a finding that is consistent with a decrease in the diffusivity in the channels.  相似文献   

3.
《Microporous Materials》1994,2(2):127-136
The adsorption isotherms and 129Xe nuclear magnetic resonance (NMR) chemical shifts of xenon and the adsorption isotherms of carbon monoxide of Cu(II)- and Cu(I)-exchanged zeolites NaY were measured. The former zeolites of 53, 75, and 95% exchange degrees were investigated after various pretreatment steps comprising dehydration, oxidation and reduction with CO at 420°C as well as long-term CO reduction at 470°C. The Cu(I)Y zeolite of 70% exchange degree was prepared via a solid-state exchange procedure with CuCl and subjected to dehydration at 420°C. In all cases, except the dehydrated zeolites, almost linear xenon adsorption isotherms and linear 129Xe NMR chemical shift versus xenon concentration curves running parallel to each other are obtained. In contrast, the chemical shift curves for the dehydrated zeolites are non-linear at low xenon concentrations turning towards negative chemical shift values at very low pressures. The whole body of the experimental xenon data can be explained quantitatively with a unifying approach on the basis of a site adsorption model where the sites are (i) two types of cuprous ions of much different adsorption strength and 129Xe chemical shift, (ii) Na+ cations, (iii) Lewis acid sites generated through autoreduction and reduction of Cu2+ by CO, and (iv) framework sites free of cations. These five types of sites are each characterized by Langmuir adsorption isotherm constants and local 129Xe NMR chemical shifts. The adsorption site concentrations in the various zeolites are evaluated. The supercage Cu(I) concentration values are in nice agreement with the results deduced from the CO adsorption isotherm measurements.  相似文献   

4.
In this article, we report a detailed study of resorcinol-formaldehyde (RF) aerogels prepared under different processing conditions, [resorcinol]/[catalyst] (R/C) ratios in the starting sol-gel solutions, using continuous flow hyperpolarized (129)Xe NMR in combination with solid-state (13)C and two-dimensional wide-line separation (2D-WISE) NMR techniques. The degree of polymerization and the mobility of the cross-linking functional groups in RF aerogels are examined and correlated with the R/C ratios. The origin of different adsorption regions is evaluated using both coadsorption of chloroform and 2D EXSY (129)Xe NMR. A hierarchical set of Xe exchange processes in RF aerogels is found using 2D EXSY (129)Xe NMR. The exchange of Xe gas follows the sequence (from fastest to slowest): mesopores with free gas, gas in meso- and micropores, free gas with micropores, and, finally, among micropore sites. The volume-to-surface-area (V(g)/S) ratios for aerogels are measured for the first time without the use of geometric models. The V(g)/S parameter, which is related both to the geometry and the interconnectivity of the pore space, has been found to correlate strongly with the R/C ratio and exhibits an unusually large span: an increase in the R/C ratio from 50 to 500 results in about a 5-fold rise in V(g)/S.  相似文献   

5.
The known xenon-binding (±)-cryptophane-111 (1) has been functionalized with six [(η(5)-C(5)Me(5))Ru(II)](+) ([Cp*Ru](+)) moieties to give, in 89% yield, the first water-soluble cryptophane-111 derivative, namely [(Cp*Ru)(6)1]Cl(6) ([2]Cl(6)). [2]Cl(6) exhibits a very high affinity for xenon in water, with a binding constant of 2.9(2) × 10(4) M(-1) as measured by hyperpolarized (129)Xe NMR spectroscopy. The (129)Xe NMR chemical shift of the aqueous Xe@[2](6+) species (308 ppm) resonates over 275 ppm downfield of the parent Xe@1 species in (CDCl(2))(2) and greatly broadens the practical (129)Xe NMR chemical shift range made available by xenon-binding molecular hosts. Single crystal structures of [2][CF(3)SO(3)](6)·xsolvent and 0.75H(2)O@1·2CHCl(3) reveal the ability of the cryptophane-111 core to adapt its conformation to guests.  相似文献   

6.
Model aqueous dispersions of polystyrene, poly(methyl methacrylate), poly(n-butyl acrylate) and a statistical copolymer poly(n-butyl acrylate-co-methyl methacrylate) were studied using xenon NMR spectroscopy. The 129Xe NMR spectra of these various latexes reveal qualitative and quantitative differences in the number of peaks and in their line widths and chemical shifts. Above the glass transition temperature, exchange between xenon sorbed in the particle core and free xenon outside the particles is fast on the 129Xe spectral time-scale and a single 129Xe signal is observed. At temperatures below the glass transition temperature, the exchange between sorbed and free xenon is slow on the 129Xe spectral time-scale and two 129Xe NMR signals can be observed. If the signal of sorbed 129Xe is observed, its chemical shift, line width and integral relative to the integral of free 129Xe can be used for the characterization of the particle core. The line width of free 129Xe provides the residence time of xenon outside the particles and can be used to determine the rate constant characterizing the kinetics of penetration of xenon in the particles. This rate constant emerges as promising parameter for the characterization of the polymer particle surface.  相似文献   

7.
The NMR signal of hyperpolarized (129) Xe trapped in cryptophane cages in different solvents experiences different chemical shifts. An encoding method is presented that involves the optimal use of reversible Xe binding and efficiently uses hyperpolarization. This method is utilized in nanomolar imaging, subsecond imaging, and time-resolved studies while maintaining high spectral selectivity.  相似文献   

8.
An extensive study has been made on a series of multifunctional mesoporous silica materials, prepared by introducing two different organoalkoxysilanes, namely 3-[2-(2-aminoethylamino)ethylamino]propyltrimethoxysilane (AEPTMS) and 3-cyanopropyltriethoxysilane (CPTES) during the base-catalyzed condensation of tetraethoxysilane (TEOS), using the variable-temperature (VT) hyperpolarized (HP) 129Xe NMR technique. VT HP-129Xe NMR chemical shift measurements of adsorbed xenon revealed that surface properties as well as functionality of these AEP/CP-functionalized microparticles (MP) could be controlled by varying the AEPTMS/CPTES ratio in the starting solution during synthesis. Additional chemical shift contribution due to Xe-moiety interactions was observed for monofunctional AEP-MP and CP-MP as well as for bifunctional AEP/CP-MP samples. In particular, unlike CP-MP that has a shorter organic backbone on the silica surface, the amino groups in the AEP chain tends to interact with the silanol groups on the silica surface causing backbone bending and hence formation of secondary pores in AEP-MP, as indicated by additional shoulder peak at lower field in the room-temperature 129Xe NMR spectrum. The exchange processes of xenon in different adsorption regions were also verified by 2D EXSY HP-129Xe NMR spectroscopy. It is also found that subsequent removal of functional moieties by calcination treatment tends to result in a more severe surface roughness on the pore walls in bifunctional samples compared to monofunctional ones. The effect of hydrophobicity/hydrophilicity of the organoalkoxysilanes on the formation, pore structure and surface property of these functionalized mesoporous silica materials are also discussed.  相似文献   

9.
The 129Xe NMR line shapes of xenon adsorbed in the nanochannels of the (+/-)-[Co(en)3]Cl3 ionic crystal have been calculated by grand canonical Monte Carlo (GCMC) simulations. The results of our GCMC simulations illustrate their utility in predicting 129Xe NMR chemical shifts in systems containing a transition metal. In particular, the nanochannels of (+/-)-[Co(en)3]Cl3 provide a simple, yet interesting, model system that serves as a building block toward understanding xenon chemical shifts in more complex porous materials containing transition metals. Using only the Xe-C and Xe-H potentials and shielding response functions derived from the Xe@CH4 van der Waals complex to model the interior of the channel, the GCMC simulations correctly predict the 129Xe NMR line shapes observed experimentally (Ueda, T.; Eguchi, T.; Nakamura, N.; Wasylishen, R. E. J. Phys. Chem. B 2003, 107, 180-185). At low xenon loading, the simulated 129Xe NMR line shape is axially symmetric with chemical-shift tensor components delta(parallel) = 379 ppm and delta(perpendicular) = 274 ppm. Although the simulated isotropic chemical shift, delta(iso) = 309 ppm, is overestimated, the anisotropy of the chemical-shift tensor is correctly predicted. The simulations provide an explanation for the observed trend in the 129Xe NMR line shapes as a function of the overhead xenon pressure: delta(perpendicular) increased from 274 to 292 ppm, while delta(parallel) changed by only 3 ppm over the entire xenon loading range. The overestimation of the isotropic chemical shifts is explained based upon the results of quantum mechanical 129Xe shielding calculations of xenon interacting with an isolated (+/-)-[Co(en)3]Cl3 molecule. The xenon chemical shift is shown to be reduced by about 12% going from the Xe@[Co(en)3]Cl3 van der Waals complex to the Xe@C2H6 fragment.  相似文献   

10.
Results of the first solid-state 131Xe NMR study of xenon-containing compounds are presented. The two NMR-active isotopes of xenon, 129Xe (I=1/2) and 131Xe (I=3/2), are exploited to characterize the xenon magnetic shielding and quadrupolar interactions for two sodium perxenate salts, Na4XeO6.xH2O (x=0, 2), at an applied magnetic field strength of 11.75 T. Solid-state 129/131Xe NMR line shapes indicate that the local xenon environment in anhydrous Na4XeO6 adopts octahedral symmetry, but upon hydration, the XeO6(4-) anion becomes noticeably distorted from octahedral symmetry. For stationary, anhydrous samples of Na4XeO6, the heteronuclear 129/131Xe-23Na dipolar interaction is the principal contributor to the breadth of the 129/131Xe NMR lines. For stationary and slow magic-angle-spinning samples of Na4XeO(6).2H2O, the anisotropic xenon shielding interaction dominates the 129Xe NMR line shape, whereas the 131Xe NMR line shape is completely dominated by the nuclear quadrupolar interaction. The xenon shielding tensor is approximately axially symmetric, with a skew of -0.7+/-0.3, an isotropic xenon chemical shift of -725.6+/-1.0 ppm, and a span of 95+/-5 ppm. The 131Xe quadrupolar coupling constant, 10.8+/-0.5 MHz, is large for a nucleus at a site of approximate Oh symmetry, and the quadrupolar asymmetry parameter indicates a lack of axial symmetry. This study demonstrates the extreme sensitivity of the 131Xe nuclear quadrupolar interaction to changes in the local xenon environment.  相似文献   

11.
Wild-type bacteriophage T4 lysozyme contains a hydrophobic cavity with binding properties that have been extensively studied by X-ray crystallography and NMR. In the present study, the monitoring of 1H chemical shift variations under xenon pressure enables the determination of the noble gas binding constant (K = 60.2 M(-1)). Although the interaction site is highly localized, dipolar cross-relaxation effects between laser-polarized xenon and nearby protons (SPINOE) are rather poor. This is explained by the high value of the xenon-proton dipolar correlation time (0.8 ns), much longer than the previously reported values for xenon in medium-size proteins. This indicates that xenon is highly localized within the protein cavity, as confirmed by the large chemical shift difference between free and bound xenon. The exploitation of the xenon line width variation vs xenon pressure and protein concentration allows the extraction of the exchange correlation time between free and bound xenon. Comparison to the exchange experienced by protein protons indicates that the exchange between the open and closed conformations of T4 lysozyme is not required for xenon binding.  相似文献   

12.
An approach for hyperpolarized 129Xe molecular sensors is explored using paramagnetic relaxation agents that can be deactivated upon chemical or enzymatic reaction with an analyte. Cryptophane encapsulated 129Xe within the vicinity of the paramagnetic center experiences fast relaxation that, through chemical exchange of xenon atoms between cage and solvent pool, causes accelerated hyperpolarized 129Xe signal decay in the dissolved phase. In this proof‐of‐concept work, the relaxivity of Gadolinium III‐DOTA on 129Xe in the solvent was increased eightfold through tethering of the paramagnetic molecule to a cryptophane cage. This potent relaxation agent can be ′turned off′ specifically for 129Xe through chemical reactions that spatially separate the GdIII centre from the attached cryptophane cage. Unlike 129Xe chemical shift based sensors, the new concept does not require high spectral resolution and may lead to a new generation of responsive contrast agents for molecular MRI.  相似文献   

13.
 激光抽运和自旋交换的超极化 129Xe 核磁共振是近几年发展起来的一种新方法,它比普通 129Xe 核磁共振的检测灵敏度提高约104 ~105倍,是研究材料孔结构和孔内粒子分布的强有力工具. 本文介绍了超极化 129Xe 核磁共振技术并综述了其在多孔催化材料研究中的应用,特别是对催化反应中广泛使用的无机微孔和介孔材料中的应用进行了详细的讨论. 最后展望了此技术的应用前景.  相似文献   

14.
15.
Among rare gases, xenon features an unusually broad nuclear magnetic resonance (NMR) chemical shift range in its compounds and as a non-bonded Xe atom introduced into different environments. In this work we show that (129)Xe NMR chemical shifts in the recently prepared, matrix-isolated xenon compounds appear in new, so far unexplored (129)Xe chemical shift ranges. State-of-the-art theoretical predictions of NMR chemical shifts in compounds of general formula HXeY (Y = H, F, Cl, Br, I, -CN, -NC, -CCH, -CCCCH, -CCCN, -CCXeH, -OXeH, -OH, -SH) as well as in the recently prepared ClXeCN and ClXeNC species are reported. The bonding situation of Xe in the studied compounds is rather different from the previously characterized cases as Xe appears in the electronic state corresponding to a situation with a low formal oxidation state, between I and II in these compounds. Accordingly, the predicted (129)Xe chemical shifts occur in new NMR ranges for this nucleus: ca. 500-1000 ppm (wrt Xe gas) for HXeY species and ca. 1100-1600 ppm for ClXeCN and ClXeNC. These new ranges fall between those corresponding to the weakly-bonded Xe(0) atom in guest-host systems (δ < 300 ppm) and in the hitherto characterized Xe molecules (δ > 2000 ppm). The importance of relativistic effects is discussed. Relativistic effects only slightly modulate the (129)Xe chemical shift that is obtained already at the nonrelativistic CCSD(T) level. In contrast, spin-orbit-induced shielding effects on the (1)H chemical shifts of the H1 atom directly bonded to the Xe center largely overwhelm the nonrelativistic deshielding effects. This leads to an overall negative (1)H chemical shift in the range between -5 and -25 ppm (wrt CH(4)). Thus, the relativistic effects induced by the heavy Xe atom appear considerably more important for the chemical shift of the neighbouring, light hydrogen atom than that of the Xe nucleus itself. The predicted NMR parameters facilitate an unambiguous experimental identification of these novel compounds.  相似文献   

16.
Xenon-129 biosensors offer an attractive alternative to conventional MRI contrast agents due to the chemical shift sensitivity and large nuclear magnetic signal of hyperpolarized (129)Xe. Here, we report the first enzyme-responsive (129)Xe NMR biosensor. This compound was synthesized in 13 steps by attaching the consensus peptide substrate for matrix metalloproteinase-7 (MMP-7), an enzyme that is upregulated in many cancers, to the xenon-binding organic cage, cryptophane-A. The final coupling step was achieved on solid support in 80-92% yield via a copper (I)-catalyzed [3+2] cycloaddition. In vitro enzymatic cleavage assays were monitored by HPLC and fluorescence spectroscopy. The biosensor was determined to be an excellent substrate for MMP-7 (K(M) = 43 microM, V(max) = 1.3 x 10(-)(8) M s(-1), k(cat)/K(M) = 7,200 M(-1) s(-1)). Enzymatic cleavage of the tryptophan-containing peptide led to a dramatic decrease in Trp fluorescence, lambda(max) = 358 nm. Stern-Volmer analysis gave an association constant of 9000 +/- 1,000 M(-1) at 298 K between the cage and Trp-containing hexapeptide under enzymatic assay conditions. Most promisingly, (129)Xe NMR spectroscopy distinguished between the intact and cleaved biosensors with a 0.5 ppm difference in chemical shift. This difference most likely reflected a change in the electrostatic environment of (129)Xe, caused by the cleavage of three positively charged residues from the C-terminus. This work provides guidelines for the design and application of new enzyme-responsive (129)Xe NMR biosensors.  相似文献   

17.
A supramolecular strategy for detecting specific proteins in complex media by using hyperpolarized 129Xe NMR is reported. A cucurbit[6]uril (CB[6])‐based molecular relay was programmed for three sequential equilibrium conditions by designing a two‐faced guest (TFG) that initially binds CB[6] and blocks the CB[6]–Xe interaction. The protein analyte recruits the TFG and frees CB[6] for Xe binding. TFGs containing CB[6]‐ and carbonic anhydrase II (CAII)‐binding domains were synthesized in one or two steps. X‐ray crystallography confirmed TFG binding to Zn2+ in the deep CAII active‐site cleft, which precludes simultaneous CB[6] binding. The molecular relay was reprogrammed to detect avidin by using a different TFG. Finally, Xe binding by CB[6] was detected in buffer and in E. coli cultures expressing CAII through ultrasensitive 129Xe NMR spectroscopy.  相似文献   

18.
The first successful in situ studies of free combustion processes by one- and two-dimensional NMR spectroscopy are reported, and the feasibility of this concept is demonstrated. In this proof-of-principle work, methane combustion over a nanoporous material is investigated using hyperpolarized (hp)-xenon-129 NMR spectroscopy. Different inhomogeneous regions within the combustion cell are identified by the xenon chemical shift, and the gas exchange between these regions during combustion is revealed by two-dimensional exchange spectra (EXSY). The development of NMR spectroscopy as an analytical tool for combustion processes is of potential importance for catalyzed reactions within opaque media that are difficult to investigate by other techniques.  相似文献   

19.
Xenon has been used as a structural probe of solid poly(ethylene oxide)/atactic poly(methyl methacrylate) (PEO/PMMA) blends of concentrations 10/90 to 75/25. 129Xe-NMR spectra at 293 K show significant changes in line width and chemical shift as the blend composition is varied. The 129Xe spectra are interpreted in terms of exchange between amorphous single-phase PEO and PMMA domains. It is shown that a simple two-site exchange model can be used to calculate spectra which fit the experimental data over the whole concentration range. Xe exchange between blend subregions is demonstrated also by a two-dimensional NMR experiment. The PEO/PMMA results are compared to previously published poly(vinylidene fluoride)/PMMA 129Xe spectra. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2681–2688, 1997  相似文献   

20.
Studies of hyperpolarized xenon‐129 (hp‐129Xe) in media such as liquid crystals and cell suspensions are in demand for applications ranging from biomedical imaging to materials engineering but have been hindered by the inability to bubble Xe through the desired media as a result of viscosity or perturbations caused by bubbles. Herein a device is reported that can be reliably used to dissolve hp‐129Xe into viscous aqueous and organic samples without bubbling. This method is robust, requires small sample volumes (<60 μL), is compatible with existing NMR hardware, and is made from readily available materials. Experiments show that Xe can be introduced into viscous and aligned media without disrupting molecular order. We detected dissolved xenon in an aqueous liquid crystal that is disrupted by the shear forces of bubbling, and we observed liquid‐crystal phase transitions in (MBBA). This tool allows an entirely new class of samples to be investigated by hyperpolarized‐gas NMR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号