首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a solution procedure for three-dimensional crack problems via first kind boundary integral equations on the crack surface. The Dirichlet (Neumann) problem is reduced to a system of integral equations for the jump of the traction (of the field) across the crack surface. The calculus of pseudodifferential operators is used to derive existence and regularity of the solutions of the integral equations. With the concept of the principal symbol and the Wiener-Hopf technique we derive the explicit behavior of the densities of the integral equations near the edge of the crack surface. Based on the detailed regularity results we show how to improve the boundary element Galerkin method for our integral equations. Quasi-optimal asymptotic estimates for the Galerkin error are given.  相似文献   

2.
Here we present a new solution procedure for Helm-holtz and Laplacian Dirichlet screen and crack problems in IR2 via boundary integral equations of the first kind having as an unknown the jump of the normal derivative across the screen or a crack curve T. Under the assumption of local finite energy we show the equivalence of the integral equations and the original boundary value problem. Via the method of local Mellin transform in [5]-[lo] and the calculus of pseudodifferential operators we derive existence, uniqueness and regularity results for the solution of our boundary integral equations together with its explicit behaviour near the screen or crack tips.With our integral equations we set up a Galerkin scheme on T and obtain high quasi-optimal convergence rates by using special singular elements besides regular splines as test and trial functions.  相似文献   

3.
We present results of an investigation of the development of a transverse shear crack in a composite material with linearly viscoelastic components under external shear load. The solution is divided into the following two main stages: determination of the time dependence of the crack tip opening displacement and determination of the crack-growth kinetics as a result of the solution of integral equations. In the first stage, we use the solution of the corresponding elastic problem of determination of the crack opening displacement and the problem of determination of the effective moduli of the composite reinforced with unidirectional discrete fibers. Using the theoretically proved principle of elasto-viscoelastic analogy and the method of Laplace inverse transformation, we obtain a solution in a time domain. In the second stage, using the criterion of critical crack opening displacement for a transverse shear crack and an equation for the viscoelastic crack opening displacement of this crack, we construct an equation of crack growth. We present results of the numerical solution, which illustrate the influence of relations between the relaxation parameters of the materials of the components on the durability of the body with a crack.  相似文献   

4.
Here we present a new solution procedure for Helmholtz and Laplacian Neumann screen or Dirichlet screen problems in IR3 via boundary integral equations of the first kind having as unknown the jump of the field or of its normal derivative, respectively, across the screen S. Under the assumption of local finite energy we show the equivalence of the integral equations and the original boundary value problems. Via the Wiener-Hopf method in the halfspace, localization and the calculus of pseudodifferential operators we derive existence, uniqueness and regularity results for the solution of our boundary integral equations together with its explicit behavior near the edge of the screen. We give Galerkin schemes based on our integral equations on S and obtain high convergence rates by using special singular elements besides regular splines as test and trial functions.  相似文献   

5.
Two problems are considered for an elastic orthotropic strip: the contact problem and the crack problem. Both problems are reduced to integral equations of the first kind with different kernels, containing a singularity: logarithmic for the first problem and singular for the second problem. Regular and singular asymptotic methods are employed to construct approximate solutions of these integral equations. Numerical results are presented.  相似文献   

6.
We consider new spectral relations for harmonic polynomials of two variables. The basic relations of this type are the integral relations in a disk, which make it possible to use these polynomials to construct the solution of certain singular equations of Newtonian potential type, of both first and second kind, given on the disk. By use of these results we determine the eigenvalues of certain two-dimensional integral equations of second kind.Translated fromMatematicheskie Metody i Fiziko-Mekhanicheskie Polya, Issue 36, 1992, pp. 88–93.  相似文献   

7.
The solution of a stationary boundary value problem on a domain with conical points has singularities near these points. Here we first consider existence results in appropriate weighted Sobolev spaces in order to incorporate the singularities. We secondly use these results to prove existence, uniqueness and regularity of solutions of non-autonomous second order evolution equations on such domains.  相似文献   

8.
We are concerned with the numerical treatment of boundary integral equations by the adaptive wavelet boundary element method. In particular, we consider the second kind Fredholm integral equation for the double layer potential operator on patchwise smooth manifolds contained in ?3. The corresponding operator equations are treated by adaptive implementations that are in complete accordance with the underlying theory. The numerical experiments demonstrate that adaptive methods really pay off in this setting. The observed convergence rates fit together very well with the theoretical predictions based on the Besov regularity of the exact solution.  相似文献   

9.
The torsion of an infinite non-homogeneous elastic cylindrical fiber, containing a penny-shaped crack embedded in an infinite non-homogeneous elastic material is considered. The cylinder and elastic medium have different shear moduli. Using integral transformation techniques the solution of the problem is reduced to the solution of dual integral equations. Later on the solution of the dual integral equations is transformed into the solution of a Fredholm integral equation of the second kind, which is solved numerically. Closed form expressions are obtained for the stress intensity factor and numerical values for the stress intensity factors are graphed to demonstrate the effect of non-homogeneity of the fiber and infinite medium. In the end the stress singularity is obtained when the crack touches the infinite non-homogeneous medium (matrix).  相似文献   

10.
洪志敏  闫在在 《数学杂志》2016,36(2):425-436
本文讨论了第一类、第二类以及具有奇异核的Volterra积分方程的数值解问题.利用重要抽样蒙特卡罗随机模拟方法获得积分方程解的近似计算结果.通过对文献中算例的实现表明文中所提方法扩展了Volterra型积分方程的数值求解方法,  相似文献   

11.
The problem of an elastic half-space with stress-free surface and a crack of arbitrary shape with prescribed displacements or tractions is reduced to an equivalent system of integral equations on the crack. For a pressurized crack in a plane perpendicular to the free surface, a scalar integral equation is derived. In properly chosen function spaces, unique solvability of the integral equation and regularity of solutions for regular data are proven.  相似文献   

12.
Under consideration are the functional equations of the first, second, and third kind with operators in wide classes of linear continuous operators in L 2 containing all integral operators. We propose methods for reducing these equations by linear invertible changes either to linear integral equations of the first kind with nuclear operators or to equivalent linear integral equations of the second kind with quasidegenerate Carleman kernels. Some various approximate methods of solution are applicable to the so-obtained integral equations.  相似文献   

13.
In this paper, we present a numerical method for solving Volterra integral equations of the second kind (VK2), first kind (VK1) and even singular type of these equations. The proposed method is based on approximating unknown function with Bernstein’s approximation. This method using simple computation with quite acceptable approximate solution. Furthermore we get an estimation of error bound for this method. For showing efficiency of this method we use several examples.  相似文献   

14.
Both exterior and interior mixed Dirichlet-Neumann problems in R3 for the scalar Helmholtz equation are solved via boundary integral equations. The integral equations are equivalent to the original problem in the sense that the traces of the weak seolution satisfy the integral equations, and, conversely, the solution of the integral equations inserted into Green's formula yields the solution of the mixed boundary value problem. The calculus of pseudodifferential operators is used to prove existence and regularity of the solution of the integral equations. The regularity results — obtained via Wiener-Hopf technique — show the explicit “edge” behavior of the solution near the submanifold which separates the Dirichlet boundary from the Neumann boundary.  相似文献   

15.
The displacement discontinuity method is extended to study the fracture behavior of interface cracks in one-dimensional hexagonal quasicrystal coating subjected to anti-plane loading. The Fredholm integral equation of the first kind is established in terms of displacement discontinuities. The fundamental solution for anti-plane displacement discontinuity is derived by the Fourier transform method. The singularity of stress near the crack front is analyzed, and Chebyshev polynomials of the second kind are numerically adopted to solve the integral equations. The displacement discontinuities across crack faces, the stress intensity factors, and the energy release rate are calculated from the coefficients of Chebyshev polynomials. In combination with numerical simulations, a comprehensive study of influencing factors on the fracture behavior is conducted.  相似文献   

16.
Given a complex analytical Hamiltonian system, we prove that a necessary condition for its meromorphic complete integrability is the commutativity of the identity component of the Galois group of each variational equation of arbitrary order along any integral curve. This was conjectured by the first author based on a suggestion by the third author. The first-order non-integrability criterion, obtained by the first and second authors using only first variational equations, is extended to higher orders by the present criterion. Using this result (at order two, three or higher) it is possible to solve important open problems of integrability which escaped the first order criterion.  相似文献   

17.
In this paper we are interested in the sufficient conditions which guarantee the regularity of solutions of 3-D ideal magnetohydrodynamic equations in the arbitrary time interval [0,T]. Five sufficient conditions are given. Our results are motivated by two main ideas: one is to control the accumulation of vorticity alone; the other is to generalize the corresponding geometric conditions of 3-D Euler equations to 3-D ideal magnetohydrodynamic equations.  相似文献   

18.
Although the plane boundary value problem for the Laplacian with given Dirichlet data on one part Γ2 and given Neumann data on the remaining part Γ2 of the boundary is the simplest case of mixed boundary value problems, we present several applications in classical mathematical physics. Using Green's formula the problem is converted into a system of Fredholm integral equations for the yet unknown values of the solution u on Γ2 and the also desired values of the normal derivatie on Γ1. One of these equations has principal part of the second kind, whereas that one of the other is of the first kind. Since any improvement of constructive methods requires higher regularity of u but, on the other hand, grad u possesses singularities at the collision points Γ1 ∩ Γ2 even for C data, u is decomposed into special singular terms and a regular rest. This is incorporated into the integral equations and the modified system is solved in appropriate Sobolev spaces. The solution of the system requires to solve a Fredholm equation of the first kind on the arc Γ2 providing an improvement of regularity for the smooth part of u. Since the integral equations form a strongly elliptic system of pseudodifferential operators, the Galerkin procedure converges. Using regular finite element functions on Γ1 and Γ2 augmented by the special singular functions we obtain optimal order of asymptotic convergence in the norm corresponding to the energy norm of u and also superconvergence as well as high orders in smoother norms if the given data are smooth (and not the solution).  相似文献   

19.
A magnetic, electric and mechanical yield model is proposed for a cracked piezoelectromagnetic ceramic narrow strip. The strip is subjected to anti-plane mechanical and in-plane electric and magnetic loads, consequently the crack opens in self-similar fashion forming a magnetic, a saturation and a slide zone ahead each tip. These in turn are arrested by prescribing a magnetic, electric and mechanical load, respectively. Employing Fourier integral transform the problem reduces to the solution of three dual integral equations. The solution of dual integral equations is then expressed in terms of Fredholm integral equation of second kind. Expressions are derived for yield induction zone, slide-yield zone and saturation zone lengths, energy release rate. A case study is carried for BaTiO3–CoFe2O4 and results are presented graphically. It is shown that proposed model is capable of crack opening arrest under small-scale-yielding.  相似文献   

20.
The general formulation of the transient elastodynamic second boundary value problem in an isotropic linear elastic body with a crack of arbitrary shape by combining the boundary integral equation method and the Laplace transform with respect to time is presented in this paper. Both finite and infinite elastic bodies are considered. A numerical solution of the transformed boundary integral equations is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号