首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The title compound, C15H11N2+·HN2O6?, crystallizes in the monoclinic space group C2/c with four mol­ecules in the unit cell. The planar 9‐cyano‐10‐methyl­acridinium cations lie on crystallographic twofold axes and are arranged in layers, almost perpendicular to the ac plane, in such a way that neighbouring mol­ecules are positioned in a `head‐to‐tail' manner. These cations and the hydrogen dinitrate anions are linked through C—H?O interactions involving four of the six O atoms of the anion and the H atoms attached to the C atoms of the acridine moiety in ring positions 2 and 4. The H atom of the hydrogen dinitrate anion appears to be located on the centre of inversion relating two of the four O atoms engaged in the above‐mentioned C—H?O interactions. In this way, columns of either anions or cations running along the c axis are held in place by the network of C—H?O interactions, forming a relatively compact crystal lattice.  相似文献   

2.
The title two‐dimensional coordination polymer, [Na(C2H8NO6P2)]n, was characterized using powder X‐ray diffraction data and its structure refined using the Rietveld method. The asymmetric unit contains one Na+ cation and one (1‐azaniumylethane‐1,1‐diyl)bis(hydrogen phosphonate) anion. The central Na+ cation exhibits distorted octahedral coordination geometry involving two deprotonated O atoms, two hydroxy O atoms and two double‐bonded O atoms of the bisphosphonate anion. Pairs of sodium‐centred octahedra share edges and the pairs are in turn connected to each other by the biphosphonate anion to form a two‐dimensional network parallel to the (001) plane. The polymeric layers are connected by strong O—H...O hydrogen bonding between the hydroxy group and one of the free O atoms of the bisphosphonate anion to generate a three‐dimensional network. Further stabilization of the crystal structure is achived by N—H...O and O—H...O hydrogen bonding.<!?tpb=18.7pt>  相似文献   

3.
The title compounds, C14H12N+·CH3O4S?, (I), and C15H14N+·CH3O4S?, (II), respectively, crystallize with the planar 10‐methylacridinium or 9,10‐di­methyl­acridinium cations arranged in layers, parallel to the twofold axis in (I) and perpendicular to the 21 axis in (II). Adjacent cations in both compounds are packed in a `head‐to‐tail' manner. The methyl sulfate anion only exhibits planar symmetry in (II). The cations and anions are linked through C—H?O interactions involving three O atoms of the anion, six acridine H atoms and the CH3 group on the N atom in (I), and the four O atoms of the anion, three acridine H atoms and the carbon‐bound CH3 group in (II). The methyl sulfate anions are oriented differently in the two compounds relative to the cations, being nearly perpendicular in (I) but parallel in (II). Electrostatic interaction between the ions and the network of C—H?O interactions leads to relatively compact crystal lattices in both structures.  相似文献   

4.
In the title compound, sodium N‐chloro­benzene­sulfon­amide sesquihydrate, Na+·C6H5ClNO2S?·1.5H2O, the sodium ion exhibits octahedral coordination by O atoms from three water mol­ecules and by three sulfonyl O atoms of three different N‐­chloro­benzene­sulfon­amide anions. A two‐dimensional polymeric layer consists of units, each comprising two face‐sharing octahedra which share four corners with four other such units, the layer running parallel to the ab plane. The water mol­ecules participate in hydrogen bonds of the types O—H?O, O—H?N and O—H?Cl.  相似文献   

5.
The title complex, {[Ni(C2H8N2)3][Na(NCS)3(H2O)]}n, con­sists of discrete [Ni(en)3]2+ dications (en is ethyl­enedi­amine) and polymeric [(H2O)0.5Na(NCS)3(H2O)0.5]n2n? anions. The compound crystallizes in space group Pc1. The NiII atom lies on a threefold axis and has a distorted octahedral coordination geometry. The Na+ cation also lies on a site with imposed crystallographic threefold symmetry and is coordinated by the thio­cyanate N atoms (the thio­cyanates are in general posi­tions), by one water mol­ecule with crystallographically imposed 32 symmetry and by a second water mol­ecule with crystallographically imposed symmetry. The unique Na atom thus has trigonal–bipyramidal coordination. The O atoms of the water mol­ecules bridge the Na+ cations to form one‐dimensional polymeric chains in the crystal structure. The [Ni(en)3]2+ dications are distributed around and between the chains and are linked to them via N—H?S hydrogen bonds.  相似文献   

6.
The solution reaction of AgNO3 and 2‐aminopyrazine (apyz) in a 1:1 ratio gives rise to the title compound, [Ag2(NO3)2(C4H5N3)2]n, (I), which possesses a chiral crystal structure. In (I), both of the crystallographically independent AgI cations are coordinated in tetrahedral geometries by two N atoms from two apyz ligands and two O atoms from nitrate anions; however, the AgI centers show two different coordination environments in which one is coordinated by two O atoms from two different symmetry‐related nitrate anions and the second is coordinated by two O atoms from a single nitrate anion. The crystal structure consists of one‐dimensional AgI–apyz chains, which are further extended by μ2‐κ2O:O nitrate anions into a two‐dimensional (4,4) sheet. N—H...O and Capyz—H...O hydrogen bonds connect neighboring sheets to form a three‐dimensional supramolecular framework.  相似文献   

7.
The structure of the title compound, Na2[Zn(C6H11O2)4], consists of two‐dimensional polymeric sheets. The Zn2+ ions are approximately tetrahedrally coordinated by O atoms from different hexanoate anions. Both Na+ ions are six‐coordinated by carboxyl­ate O atoms. One of the hexanoate O atoms is attached to one Zn2+ ion and one Na+ ion, and the remaining O atom is attached to two Na+ ions.  相似文献   

8.
Copper(II) hypophosphite has been shown to exist as several polymorphs. The crystal structures of monoclinic α‐, ortho­rhombic β‐ and ortho­rhombic γ‐Cu(H2PO2)2 have been determined at different temperatures. The geometry of the hypophosphite anion in all three polymorphs is very close to the idealized one, with point symmetry mm2. Despite having different space groups, the structures of the α‐ and β‐polymorphs are very similar. The polymeric layers formed by the Cu atoms and the hypophosphite ions, which are identical in the α‐ and β‐polymorphs, stack in the third dimension in different ways. Each hypophosphite anion is coordinated to three Cu atoms. On cooling, a minimum amount of contraction was observed in the direction normal to the layers. The structure of the polymeric layers in the γ‐­polymorph is quite different. There are two symmetry‐independent hypophosphite anions; the first is coordinated to two Cu atoms, while the second is coordinated to four Cu atoms. In all three polymorphs, the Cu atoms are coordinated by six O atoms of six hypophosphite anions, forming tetragonal bipyramids; in the α‐ and β‐polymorphs, there are four short and two long Cu—O distances, while in the γ‐polymorph, there are four long and two short Cu—O distances.  相似文献   

9.
The asymmetric unit of the title compound, [InNa(C3H5O3)4]n, consists of one InIII ion, one NaI ion and four crystallographically independent l ‐lactate monoanions. The coordination of the InIII ion is composed of five carboxylate O and two hydroxy O atoms in a distorted pentagonal–bipyramidal coordination geometry. The NaI ion is six‐coordinated by four carboxylate O atoms and two hydroxy O atoms from four l ‐lactate ligands in a distorted octahedral geometry. Each InIII ion is coordinated by four surrounding l ‐lactate ligands to form an [In(l ‐lactate)4] unit, which is further linked by NaI ions through Na—O bonds to give a two‐dimensional layered structure. Hydrogen bonds between the hydroxy groups and carboxylate O atoms are observed between neighbouring layers.  相似文献   

10.
In bis(2‐carboxypyridinium) hexafluorosilicate, 2C6H6NO2+·SiF62−, (I), and bis(2‐carboxyquinolinium) hexafluorosilicate dihydrate, 2C10H8NO2+·SiF62−·2H2O, (II), the Si atoms of the anions reside on crystallographic centres of inversion. Primary inter‐ion interactions in (I) occur via strong N—H...F and O—H...F hydrogen bonds, generating corrugated layers incorporating [SiF6]2− anions as four‐connected net nodes and organic cations as simple links in between. In (II), a set of strong N—H...F, O—H...O and O—H...F hydrogen bonds, involving water molecules, gives a three‐dimensional heterocoordinated rutile‐like framework that integrates [SiF6]2− anions as six‐connected and water molecules as three‐connected nodes. The carboxyl groups of the cation are hydrogen bonded to the water molecule [O...O = 2.5533 (13) Å], while the N—H group supports direct bonding to the anion [N...F = 2.7061 (12) Å].  相似文献   

11.
The title compound, {[K(C5H9N2O7P2)(H2O)]·H2O}n, is polymeric and consists of layers parallel to (001) interconnected by hydrogen‐bonding and π–π interactions. The K+ cation is eightfold coordinated in a KO8 environment by O atoms from three different chelating zoledronate units and two coordinated water molecules. The zoledronate group presents its usual zwitterionic character, with negative charges in the singly protonated phosphonate groups and a positive charge at the protonated imidazole N atom. The anion binds to three different K+ cations in a (so far unreported) triply chelating manner. Intra‐ and interplanar interactions are enhanced by a variety of hydrogen bonds involving all available O—H and N—H donors. A strong imidazole–phosphonate C—H...O interaction is present in the structure.  相似文献   

12.
The title compound, alternatively named sodium 6‐nitro‐3H‐1,2,3‐benzoxa­thia­zole 2,2‐dioxide monohydrate, Na+·C6H3­N2O5S?·H2O, consists of chains of NaO7 units, with the seven donor‐O atoms coming from two water mol­ecules and five p‐­nitro­benzoxasulfamate anions. The seven‐coordinate geometry around the Na+ ion is described as monocapped trigonal prismatic, but with a large distortion from ideal geometry. Each triangular face is defined by one O atom each from a water mol­ecule, a nitro group and a sulfonyl group. An O atom from a sulfonyl group caps one of the square faces of the trigonal prism in an unsymmetrical fashion. The water mol­ecules and one sulfonyl O atom are involved in bridging adjacent units, as is the nitro group of the anion. The sulfamate ions adopt an antiparallel alignment between the NaO7 units and are connected to each other by C—H?O and π–π interactions. The three‐dimensional crystal structure is stabilized by a network of strong O—H?N hydrogen bonds.  相似文献   

13.
The title compound, 2C14H13N2+·S2O82−·2H2O, is a protonated amine salt which is formed from two rather uncommon ionic species, namely a peroxodisulfate (pds2−) anion, which lies across a crystallographic inversion centre, and a 2,9‐dimethyl‐1,10‐phenanthrolin‐1‐ium (Hdmph+) cation lying in a general position. Each pds2− anion binds to two water molecules through strong water–peroxo O—H...O interactions, giving rise to an unprecedented planar network of hydrogen‐bonded macrocycles which run parallel to (100). The atoms of the large R88(30) rings are provided by four water molecules bridging in fully extended form (...H—O—H...) and four pds2− anions alternately acting as long (...O—S—O—O—S—O...) and short (...O—S—O...) bridges. The Hdmph+ cations, in turn, bind to these units through hydrogen bonds involving their protonated N atoms. In addition, the crystal structure also contains π–π and aromatic–peroxo C—H...O interactions.  相似文献   

14.
The crystal structure of poly­[copper(II)‐di‐μ‐hypophosphito‐μ‐urea], [Cu(H2PO2)2(CH4N2O)]n, has been determined at 293, 100 and 15 K. The geometry of the hypophosphite anion is very close to ideal, with point symmetry mm2. Each Cu atom lies on an inversion centre and is coordinated to six O atoms from four hypophosphite anions and two urea mol­ecules, forming a tetragonal bipyramid. The unique urea molecule lies on a twofold axis. Each hypophosphite anion in the structure is coordinated to two Cu atoms. The hypophosphite anions, urea mol­ecules and CuII cations form polymeric ribbons. The CuII cations in the ribbon are linked together by two hypophos­phite anions and a urea mol­ecule, which is coordinated to Cu via an O atom. The ribbons are linked to each other by N—­H?O hydrogen bonds and form polymeric layers.  相似文献   

15.
In the title compound, [Na4(C8H16BO4)4(C4H10O2)]n, there are two coordination types for the four independent Na+ cations: two Na+ cations bond to six diolate O atoms [Na—O = 2.305 (2)–2.609 (2) Å], while the other two are five‐coordinate via one 1,4‐butane­diol [2.289 (2) and 2.349 (3) Å] and four diolate O atoms [2.295 (2)–2.408 (2) Å]. Corresponding to this, there are three‐ and four‐coordinate diolate O atoms, the latter bridging Na atoms. The 1,4‐butane­diol mol­ecules lie on inversion centres. The boron stereochemistry shows minor local perturbations from its usual tetrahedral state [B—O = 1.457 (4)–1.503 (4) Å]. The resulting polymer packs as sheets parallel to the (10) plane crosslinked by the butane­diol mol­ecules. The structure was solved using data from a multiple crystal.  相似文献   

16.
Polysulfonylamines. CLXIII. Crystal Structures of Metal Di(methanesulfonyl)amides. 12. The Orthorhombic Double Salt Na2Cs2[(CH3SO2)2N]4·3H2O: A Three‐Dimensional Coordination Polymer Built up from Cesium‐Anion‐Water Layers and Intercalated Sodium Ions The packing arrangement of the three‐dimensional coordination polymer Na2Cs2[(MeSO2)2N]4·3H2O (orthorhombic, space group Pna21, Z′ = 1) is in some respects similar to that of the previously reported sodium‐potassium double salt Na2K2[(MeSO2)2N]4·4H2O (tetragonal, P43212, Z′ = 1/2). In the present structure, four multidentately coordinating independent anions, three independent aquo ligands and two types of cesium cation form monolayer substructures that are associated in pairs to form double layers via a Cs(1)—H2O—Cs(2) motif, thus conferring upon each Cs+ an irregular O8N2 environment drawn from two N, O‐chelating anions, two O, O‐chelating anions and two water molecules. Half of the sodium ions occupy pseudo‐inversion centres situated between the double layers and have an octahedral O6 coordination built up from four anions and two water molecules, whereas the remaining Na+ are intercalated within the double layers in a square‐pyramidal and pseudo‐C2 symmetric O5 environment provided by four anions and the water molecule of the Cs—H2O—Cs motif. The net effect is that each of the four independent anions forms bonds to two Cs+ and two Na+, two independent water molecules are involved in Cs—H2O—Na motifs, and the third water molecule acts as a μ3‐bridging ligand for two Cs+ and one Na+. The crystal cohesion is reinforced by a three‐dimensional network of conventional O—H···O=S and weak C—H···O=S/N hydrogen bonds.  相似文献   

17.
In the polymeric title compound, [Cu(im)Cl(phen)]n, where im is the imidazolate anion (C3H3N2) and phen is 1,10‐phenanthroline (C12H8N2), each CuII ion is five‐coordinated by four basal N atoms (two from two different im anions and two from one phen ligand) and one axial Cl atom, in a distorted square‐pyramidal coordination geometry. Moreover, each im anion bridges two identical {CuCl(phen)}+ cations through its two N atoms, resulting in a one‐dimensional zigzag chain along the crystallographic a axis. In addition, pairs of adjacent chains are staggered by π–π interactions, generating a two‐dimensional layer, and neighbouring layers are further linked by two different kinds of C—H⋯Cl interactions, producing a three‐dimensional network.  相似文献   

18.
The structures of two hydrated salts of 4‐aminophenylarsonic acid (p‐arsanilic acid), namely ammonium 4‐aminophenylarsonate monohydrate, NH4+·C6H7AsNO3·H2O, (I), and the one‐dimensional coordination polymer catena‐poly[[(4‐aminophenylarsonato‐κO)diaquasodium]‐μ‐aqua], [Na(C6H7AsNO3)(H2O)3]n, (II), have been determined. In the structure of the ammonium salt, (I), the ammonium cations, arsonate anions and water molecules interact through inter‐species N—H...O and arsonate and water O—H...O hydrogen bonds, giving the common two‐dimensional layers lying parallel to (010). These layers are extended into three dimensions through bridging hydrogen‐bonding interactions involving the para‐amine group acting both as a donor and an acceptor. In the structure of the sodium salt, (II), the Na+ cation is coordinated by five O‐atom donors, one from a single monodentate arsonate ligand, two from monodentate water molecules and two from bridging water molecules, giving a very distorted square‐pyramidal coordination environment. The water bridges generate one‐dimensional chains extending along c and extensive interchain O—H...O and N—H...O hydrogen‐bonding interactions link these chains, giving an overall three‐dimensional structure. The two structures reported here are the first reported examples of salts of p‐arsanilic acid.  相似文献   

19.
The title compound, [Na(C8H20BO4)]n, has twofold crystallographic symmetry, with the Na+ cations bound by four O atoms [Na—O = 2.251 (3) Å]. The tetra­ethoxy­borate anion acts as a bridging ligand to form one‐dimensional polymers running along the twofold crystal axis. The crystal was treated as a racemic twin.  相似文献   

20.
The title compounds, C8H11NO, (I), and 2C8H12NO+·C4H4O42−, (II), both crystallize in the monoclinic space group P21/c. In the crystal structure of (I), intermolecular O—H...N hydrogen bonds combine the molecules into polymeric chains extending along the c axis. The chains are linked by C—H...π interactions between the methylene H atoms and the pyridine rings into polymeric layers parallel to the ac plane. In the crystal structure of (II), the succinate anion lies on an inversion centre. Its carboxylate groups interact with the 2‐ethyl‐3‐hydroxy‐6‐methylpyridinium cations via intermolecular N—H...O hydrogen bonds with the pyridine ring H atoms and O—H...O hydrogen bonds with the hydroxy H atoms to form polymeric chains, which extend along the [01] direction and comprise R44(18) hydrogen‐bonded ring motifs. These chains are linked to form a three‐dimensional network through nonclassical C—H...O hydrogen bonds between the pyridine ring H atoms and the hydroxy‐group O atoms of neighbouring cations. π–π interactions between the pyridine rings and C—H...π interactions between the methylene H atoms of the succinate anion and the pyridine rings are also present in this network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号