首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 552 毫秒
1.
We studied the kinetics of the oxidative chemical homopolymerization of 2‐methoxyaniline (OMA) in aqueous acid solutions by monitoring OMA depletion with 1H NMR spectroscopy. We used the same semiempirical kinetic model used for aniline (ANI) homopolymerization to evaluate the experimental data. The reaction kinetics of OMA homopolymerization was similar to that of ANI, although we obtained longer induction and propagation times for OMA. This was attributed to steric hindrance of the bulky methoxy substituent during the coupling reaction. Furthermore, it was suggested that a lower OMA polymerization rate could also be related to a lower concentration of nonprotonated OMA molecules in the reaction solution due to a higher pKa value for OMA than for ANI. This may also explain the lower OMA end conversion (90%) compared with that of ANI (96%). The OMA end conversion was not influenced substantially by reaction conditions; it was lower than 90% only when high acid or low oxidant (oxidant‐deficient oxidant/OMA ratio) concentrations were applied. Because the oxidant took an active part in polymerization, it markedly influenced the polymerization rate, especially the initiation rate. The OMA initiation and propagation rates increased with increasing oxidant and initial monomer concentrations and with the reaction temperature, but there was no uniform trend in the correlation between the homopolymerization rate and acid concentration. The activation energies of the OMA initiation and propagation were 57 and 10 kJ/mol, respectively. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2471–2481, 2001  相似文献   

2.
The controlled free‐radical homopolymerization of ethyl α‐hydroxymethylacrylate and copolymerization with methyl methacrylate were performed in chlorobenzene at 70 °C by the reversible addition–fragmentation chain transfer polymerization technique with 2,2′‐azobisisobutyronitrile as the initiator. 2‐Phenylprop‐2‐yl dithiobenzoate and 2‐cyanoprop‐2‐yl dithiobenzoate were used as chain‐transfer agents in the homopolymerization, whereas only the former was used in the copolymerization. All reactions presented pseudolinear kinetics. The effect of the monomer feed ratio on the copolymerization kinetics was examined. The conversion level decreased when the proportion of ethyl α‐hydroxymethylacrylate in the monomer feed was larger. Kinetic studies indicated that the radical polymerizations proceeded with apparent living character according to experiments, demonstrating an increase in the molar mass with the monomer conversion and a relatively narrow molar mass distribution. All copolymers were statistical in chain structure, as confirmed by determinations of the monomer reactivity ratios. The monomer reactivity ratios were determined, and the Mayo–Lewis terminal model provided excellent predictions for the variations of the intermolecular structure over the entire conversion range. Additionally, the chemical modification of poly(ethyl α‐hydroxymethylacrylate) was carried out to introduce glucose pendant groups into the structure. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5618–5629, 2006  相似文献   

3.
Poly(2‐oxazoline)s with methyl ester functionalized side chains are interesting as they can undergo a direct amidation reaction or can be hydrolyzed to the carboxylic acid, making them versatile functional polymers for conjugation. In this work, detailed studies on the homo‐ and copolymerization kinetics of two methyl ester functionalized 2‐oxazoline monomers with 2‐methyl‐2‐oxazoline, 2‐ethyl‐2‐oxazoline, and 2‐n‐propyl‐2‐oxazoline are reported. The homopolymerization of the methyl ester functionalized monomers is found to be faster compared to the alkyl monomers, while copolymerization unexpectedly reveals that the methyl ester containing monomers significantly accelerate the polymerization. A computational study confirms that methyl ester groups increase the electrophilicity of the living chain end, even if they are not directly attached to the terminal residue. Moreover, the electrophilicity of the living chain end is found to be more important than the nucleophilicity of the monomer in determining the rate of propagation. However, the monomer nucleophilicity can be correlated with the different rates of incorporation when two monomers compete for the same chain end, that is, in copolymerizations. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2649–2661  相似文献   

4.
We report the monomer reactivity ratios for copolymers of methyl methacrylate (MMA) and a reactive monomer, 2‐vinyl‐4,4′‐dimethylazlactone (VDMA), using the Fineman–Ross, inverted Fineman–Ross, Kelen–Tudos, extended Kelen–Tudos, and Tidwell–Mortimer methods at low and high polymer conversions. Copolymers were obtained by radical polymerization initiated by 2,2′‐azobisisobutyronitrile in methyl ethyl ketone solutions and were analyzed by NMR, gas chromatography (GC), and gel permeation chromatography. 1H NMR analysis was used to determine the molar fractions of MMA and VDMA in the copolymers at both low and high conversions. GC analysis determined the molar fractions of the monomers at conversions of less than 27% and greater than 65% for the low‐ and high‐conversion copolymers, respectively. The reactivity ratios indicated a tendency toward random copolymerization, with a higher rate of consumption of VDMA at high conversions. For both low‐ and high‐conversion copolymers, the molecular weights increased with increasing molar fractions of VDMA, and this was consistent with the faster consumption of VDMA (compared with that of MMA). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3027–3037, 2003  相似文献   

5.
The free‐radical homopolymerization and copolymerization behavior of N‐(2‐methylene‐3‐butenoyl)piperidine was investigated. When the monomer was heated in bulk at 60 °C for 25 h without an initiator, about 30% of the monomer was consumed by the thermal polymerization and the Diels–Alder reaction. No such side reaction was observed when the polymerization was carried out in a benzene solution with 1 mol % 2,2′‐azobisisobutylonitrile (AIBN) as an initiator. The polymerization rate equation was found to be Rp ∝ [AIBN]0.507[M]1.04, and the overall activation energy of polymerization was calculated to be 89.5 kJ/mol. The microstructure of the resulting polymer was exclusively a 1,4‐structure that included both 1,4‐E and 1,4‐Z configurations. The copolymerizations of this monomer with styrene and/or chloroprene as comonomers were carried out in benzene solutions at 60 °C with AIBN as an initiator. In the copolymerization with styrene, the monomer reactivity ratios were r1 = 6.10 and r2 = 0.03, and the Q and e values were calculated to be 10.8 and 0.45, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1545–1552, 2003  相似文献   

6.
This paper presents the solution homopolymerization, random and block copolymerization of acrylic monomers, mediated using an S‐(1,4‐phenylenebis(propane‐2,2‐diyl)) bis(N,N‐butoxycarbonylmethyldithiocarbamate) RAFT agent. Fair to good control was obtained over the solution homopolymerization of various acrylic monomers. Although inhibition periods were observed, nearly no retardation was found to occur. Satisfactory control was also obtained over the solution copolymerization of n‐butyl acrylate with methacrylic acid, mediated using this RAFT agent. Finally, triblock copolymer synthesis, starting from the macromolecular intermediates produced in the homo‐ and copolymerization experiments, was studied, and was shown to be successful. The observed relatively broad molar mass distributions could be explained by a partial decomposition of the dithiocarbamate‐based RAFT agent during synthesis and/or polymerization, for which strong indications were obtained by performing a careful MALDI‐ToF MS analysis. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6419–6434, 2006  相似文献   

7.
A series of copolymers were easily synthesized via the chemical oxidative polymerization of 2‐pyridylamine (2PA) and aniline (AN) in an acidic aqueous medium. The yield, intrinsic viscosity, and solubility of the copolymers were studied through changes in the 2PA/AN molar ratio, polymerization temperature, oxidant, oxidant/monomer molar ratio, and polymerization medium. The resulting 2PA/AN copolymers were characterized by 1H NMR, Fourier transform infrared, wide‐angle X‐ray diffraction, and thermogravimetric techniques. The results showed that the oxidative copolymerization from 2PA and AN was exothermic. The resultant copolymers were amorphous and exhibited enhanced solubility in comparison with polyaniline. The 2PA/AN copolymers showed the highest decomposition temperature (530 °C), the slowest maximum‐weight‐loss rate (1.2 %/min), the largest char yield (45 wt %), and the greatest degradation activation energy (65 kJ/mol) in nitrogen. The thermostability of the copolymers was generally higher in nitrogen than in air. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4407–4418, 2000  相似文献   

8.
Novel phosphorus‐containing acrylate monomers were synthesized by two different routes. The first involved the reaction of ethyl α‐chloromethyl acrylate and t‐butyl α‐bromomethyl acrylate with diethylphosphonoacetic acid. The monomers were bulk‐ and solution‐polymerized at 56–64 °C with 2,2′‐azobisisobutyronitrile. The ethyl ester monomer showed a high crosslinking tendency under these conditions. The selective hydrolysis of the ethyl ester phosphonic ester compound was carried out with trimethylsilyl bromide, producing a phosphonic acid monomer. In the second route, ethyl α‐hydroxymethyl acrylate and t‐butyl α‐hydroxymethyl acrylate were reacted with diethylchlorophosphate. The bulk homopolymerization and copolymerization of these monomers with methyl methacrylate and 2,2′‐azobisisobutyronitrile gave soluble polymers. The attempted hydrolysis of the monomers was unsuccessful because of the loss of the diethylphosphate group. The relative reactivities of the monomers in the photopolymerizations were also compared. The ethyl α‐hydroxymethyl acrylate/diethylphosphonic acid monomer showed higher reactivity than the other monomers, which may explain the crosslinking during the polymerization of this monomer. The reactivities of other derivatives were similar, but the rates of polymerization were slow in comparison with those of methyl methacrylate. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3221–3231, 2002  相似文献   

9.
Styrene/maleic anhydride (MA) copolymerization was carried out using benzoyl peroxide (BPO) and 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO). Styrene/MA copolymerization proceeded faster and yielded higher molecular weight products compared to styrene homopolymerization. When styrene/MA copolymerization was approximated to follow the first‐order kinetics, the apparent activation energy appeared to be lower than that corresponding to styrene homopolymerization. Molecular weight of products from isothermal copolymerization of styrene/MA increased linearly with the conversion. However products from the copolymerization at different temperatures had molecular weight deviating from the linear relationship indicating that the copolymerization did not follow the perfect living polymerization characteristics. During the copolymerization, MA was preferentially consumed by styrene/MA random copolymerization and then polymerization of practically pure styrene continued to produce copolymers with styrene‐co‐MA block and styrene‐rich block. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2239–2244, 2000  相似文献   

10.
Mechanisms for “charge‐transfer” spontaneous polymerizations and cycloadditions between electron‐rich olefins and electron‐poor olefins were reviewed. As for propagation, literature proposals involving charge‐transfer complexes were rejected. Instead, alternating copolymerization is ascribed to polar effects in free‐radical reactions. As for spontaneous initiation, literature proposals involving charge‐transfer complexes, with or without proton transfer, were rejected. Instead, the initiating species is postulated to be a tetramethylene zwitterion biradical, which may initiate either ionic homopolymerization or free‐radical copolymerization. A new hypothesis proposes that any interaction that brings vinyl monomers close together may facilitate tetramethylene formation and spontaneous polymerization. These interactions include Coulombic, acid–base, hydrophobic–hydrophilic and templating–tethering interactions. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2069–2077, 2001  相似文献   

11.
A living anionic alternating copolymerization of ethylphenylketene (EPK) with 4‐methoxybenzaldehyde (MBA) was achieved. When n‐butyllithium was added to a mixture of EPK and MBA in tetrahydrofuran at ?40 °C in the presence of an excess amount of lithium chloride, the copolymerization of these monomers proceeded via complete 1:1 alternating manner to afford the polymer with a narrow molecular weight distribution. A linear relationship was observed between the molecular weight and the monomer/initiator ratio, keeping a narrow molecular weight distribution. The structure of the obtained polymer was determined to be a polyester by IR spectroscopy together with the reductive degradation of the polymer by lithium aluminum hydride, which quantitatively afforded the corresponding diol to the repeating unit of the expected polyester structure. Both conversions of EPK and MBA agreed to a first‐order kinetic equation with linear evolution between the molecular weight and conversion. These observations along with the successful results in two‐stage polymerization indicate that the present copolymerization proceeded through a living mechanism. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2078–2084, 2001  相似文献   

12.
Copper(0)‐mediated radical polymerization (single electron transfer‐living radical polymerization) is an efficient polymerization technique that allows control over the polymerization of acrylates, vinyl chloride and other monomers, yielding bromide terminated polymer. In this contribution, we investigate the evolution of the end‐group fidelity at very high conversion both in the presence and in the absence of initially added copper (II) bromide (CuBr2). High resolution electrospray‐ionization mass spectroscopy (ESI‐MS) allows determination of the precise chemical structure of the dead polymers formed during the polymerization to very high monomer conversion, including post polymerization conditions. Two different regimes can be identified via ESI‐MS analysis. During the polymerization, dead polymer results mainly from termination via disproportionation, whereas at very high conversion (or in the absence of monomer, that is, post‐polymerization), dead polymers are predominantly generated by chain transfer reactions (presumably to ligand). The addition of CuBr2 significantly reduces the extent of termination by both chain transfer and disproportionation, at very high monomer conversion and under post‐polymerization conditions, offering a convenient approach to maintaining high end‐group fidelity in Cu(0)‐mediated radical polymerization. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
Well‐defined, core‐shell poly(methyl methacrylate) (PMMA)/casein nanoparticles, ranging from 80 to 130 nm in diameter, were prepared via a direct graft copolymerization of methyl methacrylate (MMA) from casein. The polymerization was induced by a small amount of alkyl hydroperoxide (ROOH) in water at 80 °C. Free radicals on the amino groups of casein and alkoxy radicals were generated concurrently, which initiated the graft copolymerization and homopolymerization of MMA, respectively. The presence of casein micelles promoted the emulsion polymerization of the monomer and provided particle stability. The conversion and grafting efficiency of the monomer strongly depended on the type of radical initiator, ROOH concentration, casein to MMA ratio, and reaction temperature. The graft copolymers and homopolymer of PMMA were isolated and characterized with Fourier transform infrared spectroscopy and differential scanning calorimetry. The molecular weight determination of both the grafted and homopolymer of PMMA suggested that the graft copolymerization and homopolymerization of MMA proceeded at a similar rate. The transmission electron microscopic image of the nanoparticles clearly showed a well‐defined core‐shell morphology, where PMMA cores were coated with casein shells. The casein shells were further confirmed with a zeta‐potential measurement. Finally, this synthetic method allowed us to prepare PMMA/casein nanoparticles with a solid content of up to 31%. Thus, our new process is commercially viable. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3346–3353, 2003  相似文献   

14.
The cationic homopolymerization and copolymerization of L,L ‐lactide and ε‐caprolactone in the presence of alcohol have been studied. The rate of homopolymerization of ε‐caprolactone is slightly higher than that of L,L ‐lactide. In the copolymerization, the reverse order of reactivities has been observed, and L,L ‐lactide is preferentially incorporated into the copolymer. Both the homopolymerization and copolymerization proceed by an activated monomer mechanism, and the molecular weights and dispersities are controlled {number‐average degree of polymerization = ([M]0 ? [M]t)/[I]0, where [M]0 is the initial monomer concentration, [M]t is the monomer concentration at time t, and [I]0 is the initial initiator concentration; weight‐average molecular weight/number‐average molecular weight ~1.1–1.3}. An analysis of 13C NMR spectra of the copolymers indicates that transesterification is slow in comparison with propagation, and the microstructure of the copolymers is governed by the relative reactivity of the comonomers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 7071–7081, 2006  相似文献   

15.
A series of ethylene, propylene homopolymerizations, and ethylene/propylene copolymerization catalyzed with rac‐Et(Ind)2ZrCl2/modified methylaluminoxane (MMAO) were conducted under the same conditions for different duration ranging from 2.5 to 30 min, and quenched with 2‐thiophenecarbonyl chloride to label a 2‐thiophenecarbonyl on each propagation chain end. The change of active center ratio ([C*]/[Zr]) with polymerization time in each polymerization system was determined. Changes of polymerization rate, molecular weight, isotacticity (for propylene homopolymerization) and copolymer composition with time were also studied. [C*]/[Zr] strongly depended on type of monomer, with the propylene homopolymerization system presented much lower [C*]/[Zr] (ca. 25%) than the ethylene homopolymerization and ethylene–propylene copolymerization systems. In the copolymerization system, [C*]/[Zr] increased continuously in the reaction process until a maximum value of 98.7% was reached, which was much higher than the maximum [C*]/[Zr] of ethylene homopolymerization (ca. 70%). The chain propagation rate constant (kp) of propylene polymerization is very close to that of ethylene polymerization, but the propylene insertion rate constant is much smaller than the ethylene insertion rate constant in the copolymerization system, meaning that the active centers in the homopolymerization system are different from those in the copolymerization system. Ethylene insertion rate constant in the copolymerization system was much higher than that in the ethylene homopolymerization in the first 10 min of reaction. A mechanistic model was proposed to explain the observed activation of ethylene polymerization by propylene addition. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 867–875  相似文献   

16.
An investigation of the polymer particle growth characteristics and polymer molecular weight and composition distributions in ethylene homopolymerization and ethylene/1‐hexene copolymerization has been carried out with a catalyst comprising a zirconocene and methylaluminoxane immobilized on a silica support. The presence of 1‐hexene leads to higher productivity and easier fragmentation of the support during particle growth. Crystallization analysis fractionation and gel permeation chromatography analysis of ethylene/1‐hexene copolymers prepared at different polymerization times reveals a broadening of the chemical composition distribution with increasing polymerization time as a result of the gradual formation of a relatively high‐molecular‐weight, ethylene‐rich fraction. The results are indicative of significant monomer diffusion effects in both homopolymerization and copolymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2883–2890, 2006  相似文献   

17.
Three novel phosphonated methacrylate monomers have been synthesized and studied for use in dental applications. Two of the monomers were synthesized from the reactions of glycidyl methacrylate (GMA) with (diethoxy‐phosphoryl)‐acetic acid (monomer 1 ) and (2‐hydroxy‐ethyl)‐phosphonic acid dimethyl ester (monomer 2 ). These monomers showed high crosslinking tendencies during thermal bulk and solution polymerizations. The third monomer (monomer 3 ) was prepared by the reaction of bisphenol A diglycidylether (DER) with (diethoxy‐phosphoryl)‐acetic acid and subsequent conversion of the resulting diol to the methacrylate with methacryloyl chloride. The homopolymerization and copolymerization behaviors of the synthesized monomers were also investigated with glycerol dimethacrylate (GDMA), triethylene glycol dimethacrylate (TEGDMA), and 2,2‐bis[4‐(2‐hydroxy‐3‐methacryloyloxy propyloxy) phenyl] propane (bis‐GMA) using photodifferential scanning calorimetry at 40 °C using 2,2′‐dimethoxy‐2‐phenyl acetophenone (DMPA) as photoinitiator. Monomer 1 showed polymerization rate similar or greater than dimethacrylates studied here but with higher conversion. The maximum rate of polymerizations decreased in the following order: 1 ~TEGDMA>GDMA~bis‐GMA~ 3 > 2 . A synergistic effect in the rate of polymerization was observed during copolymerizations. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2290–2299, 2008  相似文献   

18.
A binary mixture of styrene and maleic anhydride has been graft copolymerized onto cellulose extracted from Pinus roxburghii needles. The reaction was initiated with gamma rays in air by the simultaneous irradiation method. Graft copolymerization was studied under optimum conditions of total dose of radiation, amount of water, and molar concentration previously worked out for grafting styrene onto cellulose. Percentage of total conversion (Pg), grafting efficiency (%), percentage of grafting (Pg), and rates of polymerization (Rp), grafting (Rg), and homopolymerization (Rh) have been determined as a function of maleic anhydride concentration. The high degree of kinetic regularity and the linear dependence of the rate of polymerization on maleic anhydride concentration, along with the low and nearly constant rate of homopolymerization suggest that the monomers first form a complexomer which then polymerizes to form grafted chains with an alternating sequence. Grafting parameters and reaction rates achieve maximum values when the molar ratio of styrene to maleic anhydride is 1 : 1. Further evidence for the alternating monomer sequence is obtained from quantitatively evaluating the composition of the grafted chains from the FT‐IR spectra, in which the ratio of anhydride absorbance to aromatic (CC) absorbance for the stretching bands assigned to the grafted monomers remained constant and independent of the feed ratio of maleic anhydride to styrene. Thermal behaviour of the graft copolymers revealed that all graft copolymers exhibit single stage decomposition with characteristic transitions at 161–165°C and 290–300°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1763–1769, 1999  相似文献   

19.
Poly(2‐vinylpyridine) (P2VP) containing functionalized end groups was synthesized using nitroxyl‐mediated radical polymerization with a hydroxy‐functionalized stable free radical. It was shown that P2VP could be synthesized with variable molar masses and low polydispersities. The transformation of the hydroxy groups to an acrylic ester led to the formation of macromonomers. A free‐radical copolymerization of these macromonomers with N‐isopropylacrylamide gave a graft copolymer with a poly(N‐ispopropylacrylamide) backbone and P2VP side chains. Polymers containing different amounts of the monomers were synthesized. It was possible to vary both the amount of P2VP side chains at a constant chain length of the macromonomer and the chain length at a nearly constant chain number. The behavior of the multifunctional macromolecules at different temperatures and pH values was investigated using dynamic light scattering and DSC. The macromolecules were found to retain the specific properties of the homopolymers. The hydrodynamic radii of the synthesized graft copolymers were both dependent on the temperature and pH value. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3797–3804, 2001  相似文献   

20.
The copolymer microspheres of styrene (St) and maleic anhydride (MA) were synthesized by stabilizer‐free dispersion polymerization, and the polymerization process was explored in detail. The results showed that the homopolymerization of St formed in initial polymerization period served as stabilizer, and reaction solvent of closer solubility parameter would benefit the stabilizer‐free dispersion polymerization. In addition, some principal factors affecting the microspheres size, such as reaction time, reaction temperature, monomer concentration, molar feed ratio, reaction media, and cosolvent, were investigated as well. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号