首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of cationic organoiron polymers with azobenzene moieties in their side chains has been accomplished via nucleophilic aromatic substitution and ring-opening metathesis polymerization (ROMP) reactions. Polyaromatic ethers and thioethers with azobenzene moieties in their side chains were functionalized with different chromophores to yield yellow-, orange- and red-colored polymers. Polynorbornenes with azobenzene-containing side chains were isolated following ROMP of their monomeric analogs. All of the organoiron polymers were soluble in polar organic solvents and underwent reversible electrochemical reduction processes. Photobleaching of the azobenzene-containing polymers was achieved in the presence of hydrogen peroxide. The metallated polymers had glass transition temperatures approximately 50 to 80°C higher than their organic analogs.  相似文献   

2.
The synthesis of sulfone-containing monomers with pendent cationic cyclopentadienyliron (CpFe+) moieties has been accomplished via nucleophilic aromatic substitution of dichloroarene complexes with a number aliphatic dithiols. These complexes were further oxidized using m-CPBA to give the sulfone-based monomers. Polymerization of the sulfone-based monomers with O-containing nucleophiles produced the sulfone-based polymers. Direct nucleophilic aromatic substitution of dichloroarene complexes with dinucleophiles allowed for the formation of organoiron sulfide-based polymers. Oxidation of these polymers led to the formation of sulfone polymers with the pendent iron moieties. The organometallic monomers and polymers were found to be more soluble in polar solvents in comparison to their organic analogues.  相似文献   

3.
With nucleophilic aromatic substitution and ester condensation reactions, several new first‐generation dendrimers and star‐shaped molecules containing cationic cyclopentadienyl iron moieties were prepared. Although the solubility of the organoiron star‐shaped molecules with ether bridges in polar solvents was found to decrease with an increase in the size of the molecule, the addition of ester linkages resulted in a sharp decrease in the solubility, regardless of the size. The thermal behavior of these molecules was examined with differential scanning calorimetry and thermogravimetric analysis. The glass‐transition temperatures (Tg's) of these star‐shaped molecules ranged from 123 to 170 °C. However, the addition of the ester functionality allowed for an increase in the Tg's to 151–194 °C. The star‐shaped molecules were thermally stable up to 200 °C, above which a loss of the cationic cyclopentadienyl iron moieties occurred. Degradation of the ester chains started at 321 °C, and degradation of the ether chains started at 408 °C. Electrochemical studies of the ether star‐shaped molecules showed a reduction of the 18‐electron iron centers to 19‐electron centers. This redox system was reversible at low temperatures, whereas it was irreversible at room temperature. Moreover, an increase in the number of metal moieties caused an overlap and broadening of the redox wave. Viscosity studies showed a polyelectrolyte effect for the organoiron star‐shaped molecules. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1382–1396, 2005  相似文献   

4.
The synthesis of linear and star-shaped oligomers containing cationic and neutral organoiron groups in their structures was achieved by reaction of cationic arene complexes of cyclopentadienyliron containing terminal hydroxyl groups with 1,1′-ferrocenedicarbonyl chloride or ferrocene carboxylic acid. The use of chloroarene complexes allowed for the formation of triiron complexes that were subsequently polymerized via nucleophilic aromatic substitution with various oxygen- and sulfur-based dinucleophiles. The corresponding polyethers and thioethers were isolated in good yields and these materials exhibited excellent solubilities in polar organic solvents. Cyclic voltammetric investigations revealed that the cationic iron centers pendent to the polymer backbones underwent reversible reduction steps, while the neutral iron centers within the polymer backbones underwent reversible oxidation steps. Photolysis of these polymers resulted in the removal of the cationic cyclopentadienyliron moieties pendent to the polymer backbones. Thermogravimetric analysis (TGA) revealed that the cationic iron complexes were cleaved from the polymers at approximately 210 °C. Differentials scanning calorimetry (DSC) revealed that the glass transition temperatures of the cationic polymers occurred at higher temperatures than their neutral analogs.  相似文献   

5.
Two series of novel amorphous poly(aryl ether phthalazine)s have been prepared via an intramolecular ring closure reaction of poly(aryl ether ketone)s (PAEKs) with hydrazine monohydrate. Fluorinated PAEKs, which display solubility in solvents incorporating a ketone functionality such as acetone or ethyl acetate, were converted to poly(aryl ether phthalazine)s to observe if these polymers would display similar solubility characteristics. The poly(aryl ether phthalazine)s have glass transition temperatures in the range of 278–320°C and show 5% weight loss points greater than 500°C in air and nitrogen atmospheres. The fluorinated poly(aryl ether phthalazine)s were not soluble in ketonic solvents. A series of poly(aryl ether phthalazine)s incorporating pendant 2-naphthalenyl moieties has been prepared in an attempt to produce amorphous, thermally stable polymers with high glass transition temperatures. The polymers have glass transition temperatures in the range of 287–334°C and show 5% weight loss points greater than 500°C in air and nitrogen atmospheres. Poly(aryl ether phthalazine)s undergo an exothermic reaction above the glass transition temperature. The major product of this reaction is a rearrangement of the phthalazine moieties to quiazoline moieties, however some crosslinking of the polymers occurs. Cured samples of the poly(aryl ether phthalazine)s show a small increase in the polymer Tg and are insoluble in all solvents tested. © 1996 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 34:1897–1905, 1996  相似文献   

6.
Organoiron polynorbornene containing arylazo or hetarylazo dye chromophores has been prepared via ring opening metathesis polymerization using Grubbs' catalyst. The obtained polymers were isolated as brightly colored materials and displayed good solubility in polar organic solvents. The colors of these polymers were affected by the nature of the incorporated azo chromophores. Thermogravimetric analysis of these materials showed that the cleavage of the cyclopentadienyliron (CpFe+) moieties was between 225 and 231 °C, while the degradation of the polymer backbones occurred between 400 and 450 °C. UV-vis studies in DMF showed that the organoiron polymers containing arylazo dyes exhibit wavelength maxima around 425 nm. However, the replacement of these arylazo moieties with hetarylazo dyes displayed substantial bathochromic shifts in the λmax values (≈ 511 nm).  相似文献   

7.
Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry analysis revealed that the HCl–vinyl ether adduct/SnCl4/n‐Bu4NCl initiating system induced living cationic polymerization of isobutyl vinyl ether in CH2Cl2 at ?78 °C, that is, the well‐resolved spectra demonstrated that the produced polymers consist of only one series of polymers carrying one initiator fragment at the α end and one methoxy group originated from quenching with methanol at the ω end. The polymer molecular weight as well as the terminal structure were unchanged even when the reaction mixtures were kept unquenched at ?78 °C for an interval of more than five times longer than the reaction period after complete consumption of monomer, which indicates the long lifetime of the living end even under such starved conditions. In contrast, the polymers obtained at a higher temperature, ?15 °C, showed an additional minor series of polymers formed via proton initiation, originating from adventitious water. Under the starved conditions, other side reactions occurred to generate minor series of polymers with an aldehyde ω end or a diisobutyl acetal ω end. Rather surprisingly, however, unsaturated C?C end groups were not detected, which means the absence of β‐proton elimination under these conditions. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1249–1257, 2001  相似文献   

8.
Polyhydrazides and poly(amide‐hydrazide)s were prepared from two ether‐sulfone‐dicarboxylic acids, 4,4′‐[sulfonylbis(1,4‐phenylene)dioxy]dibenzoic acid and 4,4′‐[sulfonylbis(2,6‐dimethyl‐1,4‐phenylene)dioxy]dibenzoic acid, or their diacyl chlorides with terephthalic dihydrazide, isophthalic dihydrazide, and p‐aminobenzhydrazide via a phosphorylation reaction or a low‐temperature solution polycondensation. All the hydrazide polymers were found to be amorphous according to X‐ray diffraction analysis. They were readily soluble in polar organic solvents such as N‐methyl‐2‐pyrrolidone and N,N‐dimethylacetamide and could afford colorless, flexible, and tough films with good mechanical strengths via solvent casting. These hydrazide polymers exhibited glass‐transition temperatures of 149–207 °C and could be thermally cyclodehydrated into the corresponding oxadiazole polymers in the solid state at elevated temperatures. Although the oxadiazole polymers showed a significantly decreased solubility with respect to their hydrazide prepolymers, some oxadiazole polymers were still organosoluble. The thermally converted oxadiazole polymers had glass‐transition temperatures of 217–255 °C and softening temperatures of 215–268 °C and did not show significant weight loss before 400 °C in nitrogen or air. For a comparative study, related sulfonyl polymers without the ether groups were also synthesized from 4,4′‐sulfonyldibenzoic acid and the hydrazide monomers by the same synthetic routes. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2271–2286, 2001  相似文献   

9.
Soluble brominated poly(arylene ether)s containing mono‐ or dibromotetraphenylphenylene ether and octafluorobiphenylene units were synthesized. The polymers were high molecular weight (weight‐average molecular weight = 115,100–191,300; number‐average molecular weight = 32,300–34,000) and had high glass‐transition temperatures (>279 °C) and decomposition temperatures (>472 °C). The brominated polymers were phosphonated with diethylphosphite by a palladium‐catalyzed reaction. Quantitative phosphonation was possible when 50 mol % of a catalyst based on bromine was used. The diethylphosphonated polymers were dealkylated by a reaction with bromotrimethylsilane in carbon tetrachloride followed by hydrolysis with hydrochloric acid. The polymers with pendant phosphonic acid groups were soluble in polar solvents such as dimethyl sulfoxide and gave flexible and tough films via casting from solution. The polymers were hygroscopic and swelled in water. They did not decompose at temperatures of up to 260 °C under a nitrogen atmosphere. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3770–3779, 2001  相似文献   

10.
New reactive polymers with pendant halomethyl groups were successfully synthesized by polyaddition reactions of bis(epoxide)s with bis(chloroacetoxy)ester such as 1,4-bis [(chloroacetoxy)methyl]benzene (BCAMB) or 1,4-bis[(bromoacetoxy)methyl]benzene (BBAMB) using quaternary onium salts or crown ether complexes as catalysts. The polyaddition reaction of diglycidyl ether of bisphenol A (DGEBA) with BCAMB proceeded very smoothly with high yields (83–96%) by the addition of quaternary onium salts such as tetrabutylphosphonium bromide (TBPB) or crown ether complexes such as 18-crown-6/KBr as catalysts to produce high molecular weight polymers, although the reaction occurred without any catalyst to give low molecular weight polymer in low yield at 90°C for 48 h. It was also found that the reaction proceeded smoothly in aprotic polar solvents such as N-methyl-2-pyrrolidone (NMP) and N,N-dimethylacetamide (DMAc) to produce high molecular weight polymers. Polyaddition reactions of DGEBA or digylcidyl ether of ethylene glycol (DGEEG) with BBAMB, other bis(chloroacetoxy)esters or bis(bromoacetoxy)esters using TBPB in DMAc also proceeded smoothly to give the corresponding polymers. The resulting poly(ether-ester)s contain reactive halomethyl groups as side chains, which were introduced during main chain formation. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3791–3799, 1997  相似文献   

11.
A novel class of semifluorinated perfluorocyclohexenyl (PFCH) aryl ether homo/copolymers was successfully synthesized with high yield through the step‐growth polymerization of commercially available bisphenols and decafluorocyclohexene in the presence of a triethylamine base. The synthesized polymers exhibit variable thermal properties depending on the functional spacer group (R). PFCH aryl ether copolymers with random and alternating architectures were also prepared from versatile bis‐perfluorocyclohexenyl aryl ether monomers. The PFCH polymers show high thermal stabilities with a 5% decomposition temperature ranging from 359 to 444 °C in air and nitrogen atmosphere. These semifluorinated PFCH aromatic ether polymers contain intact enchained PFCH olefin moieties, making further reactions such as crosslinking and application specific functionalization possible. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 232–238  相似文献   

12.
Novel oligodimethylsiloxane‐based polymers with alkyl side chain were synthesized in bulk by step‐growth polymerization between α,ω‐glycidyl ether oligodimethylsiloxanes and a monoalkylamine in the absence of catalyst and at temperatures ranging between 80 and 180 °C. Matrix assisted laser desorption ionization time of flight results attested for the high reactivity of the amine functions with the glycidyl groups and revealed that the main polymer structure was (A2B2)n type with alkyl moieties as dangling chains. No etherification was observed during the reaction even at high temperatures and the nature of the end groups strongly depended on the molar ratio between glycidyl and amine functions. Polymerization reactions were followed by 1H NMR and the kinetics of the glycidyl‐amine reaction pointed out the dependence of temperature, molar ratio, and the molar mass of the oligodimethylsiloxane. High conversion rates were obtained, especially with the lowest molecular weight oligodimethylsiloxane. An optimized kinetic model derived from the Horie's model was discussed and permitted to correctly fit the experimental data. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
Nine new kinds of thermosetting polymers with the Si(H)? C?C unit were synthesized by dehydrogenative polycondensation reactions between hydrosilanes and diethynyl compounds in the presence of a magnesia catalyst. Phenylsilane, silane, vinylsilane, and n‐octylsilane were used as the hydrosilanes, and 1,3‐diethynylbenzene, 1,4‐diethynylbenzene, 4,4′‐diethynyldiphenyl ether, and 1,3‐diethynyl‐1,1,3,3‐tetramethyldisiloxane were used as the diethynyl compounds. All the polymers were thermosetting, highly heat‐resistant, easily soluble in a solvent, and moldable. In particular, ? Si(R)H? C?C? C6H4? C?C? (R = H or CH?CH2) showed high thermal stability; the temperature of 5% weight loss was greater than 800 °C, and the residue at 1000 °C was over 90%. The thermal stabilities of the polymers were attributed to the crosslinking reaction of the Si? H and C?C bonds. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2658–2669, 2001  相似文献   

14.
A number of classes of polynorbornenes containing cationic iron moieties within their side chains were prepared via ring‐opening metathesis polymerization with a ruthenium‐based catalyst. The iron‐containing polymers displayed excellent solubility in polar organic solvents. The weight‐average molecular weights of these polymeric materials were estimated to be in the range of 18,000–48,000. Thermogravimetric analysis of these polymers showed two distinct weight losses. The first weight loss was in the range of 204–260 °C and was due to the loss of the metallic moieties, whereas the second weight loss was observed at 368–512 °C and was due to the degradation of the polymer backbone. Cyclic voltammetry studies of the iron‐containing polymers showed that the 18 e? cationic iron centers underwent a reduction to give the neutral 19 e? complexes at half‐wave potential (E1/2) = ?1.105 V. Photolysis of the metallated polymers led to the isolation of the norbornene polymers in very good yields. Differential scanning calorimetry studies showed a sharp increase in the glass‐transition temperatures up to 91 °C when rigid aromatic side chains were incorporated into the norbornene polymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3053–3070, 2006  相似文献   

15.
A series of poly(arylene ether)s were successfully prepared by aromatic, nucleophilic substitution reactions with various perfluoroalkyl‐activated bisfluoromonomers with 4,4′‐bishydroxybiphenyl and 4,4′‐bishydroxyterphenyl. 4,4′‐Bishydroxyterphenyl was synthesized through the Grignard coupling reaction of magnesium salt of 4‐bromoanisole with dibromobenzene followed by demethylation with pyridine–hydrochloride. The products obtained by the displacement of fluorine atoms exhibited good inherent viscosity, up to 0.77 dL/g, and number‐average molecular weights up to 69,300. These poly(arylene ether)s showed very good thermal stability, up to 548 °C for 5% weight loss according to thermogravimetric analysis under synthetic air, and high glass‐transition temperatures, up to 259 °C according to differential scanning calorimetry, depending on the exact repeat unit structure. These polymers were soluble in a wide range of organic solvents, such as N‐methylpyrrolidone, dimethylformamide, tetrahydrofuran, toluene, and CHCl3, and were insoluble in dimethyl sulfoxide and acetone. Thin films of these poly(arylene ether)s showed good transparency and exhibited tensile strengths up to 132 MPa, moduli up to 3.34 GPa, and elongations at break up to 84%, depending on their exact repeating unit structures. These values are comparable to those of high‐performance thermoplastic materials such as poly(ether ether ketone) (PEEK) and Ultem poly(ether imide) (PEI). These poly(arylene ether)s exhibited low dielectric constants. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 55–69, 2002  相似文献   

16.
The synthesis of aromatic poly(ether imide)s containing spirobifluorene units in the polymer backbone is described. 2,2′‐Bis(3,4‐dicarboxyphenoxy)‐9,9′‐spirobifluorene dianhydride, which was used as a new monomer, was synthesized with 2,2′‐dihydroxy‐9,9′‐spirobifluorene as the starting material. In the spiro‐segment, the rings of the connected bifluorene were orthogonally arranged. This bis(ether anhydride) monomer was employed in reactions with a variety of aromatic diamines to furnish poly(ether imide)s, involving an initial ring‐opening polycondensation and subsequent chemically induced cyclodehydration. Excellent solubility in common organic solvents at room temperature, good optical transparency, and high thermal stability are the prominent characteristic features of these new polymers, which can be attributed to the presence of spiro‐fused orthogonal bifluorene segments along the polymer chain. The glass‐transition temperatures of the polyimides were 240–293 °C, and the 5% weight‐loss temperatures were greater than 500 °C. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 262–268, 2002  相似文献   

17.
A series of organic/inorganic hybrid star‐shaped polymers were synthesized by atom transfer radical polymerization using 3‐(3,5,7,9,11,13,15‐heptacyclohexyl‐pentacyclo[9.5.1.13,9.15,15.17,13]‐octasiloxane‐1‐yl)propyl methacrylate (MA‐POSS) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) as monomers and octakis(2‐bromo‐2‐methylpropionoxypropyldimethylsiloxy)octasilsesquioxane as an initiator. Star‐shaped polymers with methyl methacrylate (MMA) and PEGMA moieties were also prepared for comparison purposes. Dimensionally stable freestanding film could be obtained from the hybrid star‐shaped polymer containing 26 wt % of MA‐POSS moieties although its glass transition temperature is very low, ?60.9 °C. As a result, the hybrid star‐shaped polymer electrolyte containing lithium bis(trifluoromethanesulfonyl)imide showed ionic conductivities (1.75 × 10?5 S/cm at 30 °C), which were two orders of magnitude higher than those of the star‐shaped polymer electrolyte with MMA moieties. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
Two novel poly(amine‐hydrazide)s were prepared from the polycondensation reactions of the dicarboxylic acid, 9‐[N,N‐di(4‐carboxyphenyl)amino]anthracene ( 1 ), with terephthalic dihydrazide ( TPH ) and isophthalic dihydrazide ( IPH ) via the Yamazaki phosphorylation reaction, respectively. The poly(amine‐hydrazide)s were readily soluble in many common organic solvents and could be solution cast into transparent films. Differential scanning calorimetry (DSC) indicated that these hydrazide polymers had glass‐transition temperatures (Tg) in the range of 182–230 °C and could be thermally cyclodehydrated into the corresponding oxadiazole polymers in the range of 300–400 °C. The resulting poly(amine‐1,3,4‐oxadiazole)s had useful levels of thermal stability associated with high Tg (263–318 °C), 10% weight‐loss temperatures in excess of 500 °C, and char yield at 800 °C in nitrogen higher than 55%. These organo‐soluble anthrylamine‐based poly(amine‐hydrazide)s and poly (amine‐1,3,4‐oxadiazole)s exhibited maximum UV‐vis absorption at 346–349 and 379–388 nm in N‐methyl‐2‐pyrrolidone (NMP) solution, respectively. Their photoluminescence spectra in NMP solution showed maximum bands around 490–497 nm in the green region. The poly(amine‐hydrazide) I ‐ IPH showed a green photoluminescence at 490 nm with PL quantum yield of 29.9% and 17.0% in NMP solution and film state, respectively. The anthrylamine‐based poly(amine‐1,3,4‐oxadiazole)s revealed a electrochromic characteristics with changing color from the pale yellow neutral form to the red reduced form when scanning potentials negatively from 0.00 to ?2.20 V. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1584–1594, 2009  相似文献   

19.
The donor–acceptor-type norbornadiene (D–A NBD) 1,4,5,6-tetramethyl-3-phenyl-2,5-NBD-2-carboxylic acid was prepared by the Diels–Alder reaction of methyl 3-phenylprop-2-ynoate with 1,2,3,4-tetramethyl-1,3-cyclopentadiene. 1,4,5,6,7-Pentamethyl-3-phenyl-2,5-NBD-2-carboxylic acid was also synthesized in the same way. Styrene-type polymers with pendant D–A NBD moieties were prepared with a 100% degree of substitution (DS) by the reaction of D–A NBD carboxylic acids with poly[(p-chloromethyl)styrene] with 1,8-diazabicyclo[5.4.0]undecene-7 in dimethyl sulfoxide at 70 °C for 6 h. In the reaction of D–A NBD carboxylic acids with poly(2-chloroethyl vinyl ether), the DSs were about 60%. The photochemical valence isomerizations of all the NBD polymers proceeded smoothly with UV irradiation in tetrahydrofuran solutions and in the film state. In addition, the rate of the photochemical reaction of the NBD polymers increased efficiently by the addition of 4,4′-bis(diethylamino)benzophenone as a photosensitizer in a film state. The stored thermal energy of the irradiated polymers was also evaluated by differential scanning calorimetry to be 55–74 kJ/mol. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1764–1773, 2001  相似文献   

20.
A series of new organosoluble poly(amine hydrazide)s were synthesized via the Yamazaki phosphorylation reaction and were solution‐cast into transparent films. Differential scanning calorimetry indicated that the hydrazide polymers could be thermally cyclodehydrated into the corresponding oxadiazole polymers in the range of 300–400 °C. The resulting poly(amine‐1,3,4‐oxadiazole)s exhibited glass‐transition temperatures in the range of 276–297 °C, 10% weight loss temperatures in excess of 520 °C, and char yields at 800 °C in nitrogen higher than 67%. The hole‐transporting and electrochromic properties were examined with electrochemical and spectroelectrochemical methods. Cyclic voltammograms of these polymers prepared by the casting of polymer solutions onto an indium tin oxide coated glass substrate exhibited two reversible oxidative redox couples at 1.10–1.19 and 1.35–1.60 V versus Ag/AgCl in an acetonitrile solution, respectively. The poly(amine hydrazide)s revealed excellent stability of the electrochromic characteristics, changing color from the original pale yellow to green and then to blue. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 48–58, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号