首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The Hg atom in the title monomeric complex, di­chloro­bis(3‐imidazolium‐2‐thiol­ato‐S)­mercury(II), [HgCl2(C3H4N2S)2], is four‐coordinate having an irregular tetrahedral geometry composed of two Cl atoms [Hg—Cl 2.622 (2) and 2.663 (2) Å] and two thione S atoms [Hg—S 2.445 (2) and 2.462 (2) Å]. The monodentate thione ligand adopts a zwitterionic form and exists as the 3‐imidazolium‐2‐thiol­ate ion. The bond angle S1—Hg—S2 of 130.87 (8)° has the greatest deviation from ideal tetrahedral geometry. Intermolecular hydrogen bonds between two of the four N—H groups and one of the Cl atoms [3.232 (8) and 3.238 (7) Å] stabilize the crystal structure, while the other two N—H groups contribute through the formation of N—H?Cl intramolecular hydrogen bonds with the other Cl atom [3.121 (7) and 3.188 (7) Å].  相似文献   

2.
The reaction of 1‐methyl‐1,3‐imidazole‐2‐thione (meimtH) with mercury(II) iodide in methanol in a 2:1 molar ratio resulted in the formation of single crystals of the title compound, [HgI2(C4H6N2S)2]. The Hg atom is coordinated by two I [2.7809 (9) and 2.7999 (8) Å] and two thione S atoms [2.520 (3) and 2.576 (3) Å] with irregular tetrahedral coordination geometry. The NH groups of the imidazole ring take part in intra‐ and intermolecular hydrogen bonds with I atoms [N?I 3.596 (8) and 3.611 (9) Å, respectively] joining mol­ecules into infinite chains parallel to the z axis.  相似文献   

3.
The title compound, [Hg(C8H5N2S2)2], has crystallographic C2 symmetry. The Hg—S distance is 2.353 (2) Å and the coordination geometry is linear, with an S—Hg—S angle of 179.77 (18)°. The exocyclic C—S single‐bond distance is 1.749 (6) Å, and intra­molecular Hg⋯N distances of 2.857 (4) Å exist, as well as secondary Hg⋯C and S⋯S contacts.  相似文献   

4.
The reaction of PhN3(H)C6H4N3(H)Ph with Hg(NO3)2 in THF in the presence of triethylamine yields {Hg[PhN3C6H4N3(H)Ph](NO3)} as a yellow powder that can be recrystallized from THF/acetone. The crystals belong to the monoclinic system, space group P21 with the cell dimensions a = 9.639(2), b = 5.412(1), c = 19.675(4) Å, β= 97.47(3)°, V = 1017.7 (4) Å3, Z = 2. The crystal structure determination (2668 unique reflections with [I>2σ(I)], 262 parameters, R1 = 0.0393) shows that the structure consists of mononuclear complexes. Hg atoms are linearly coordinated by one Nα atom of the triazenide unit of the planar ligand [Hg‐N(1) = 2.101(8) Å] and an O atom of the NO3 ion [Hg‐O(1) = 2.11(1) Å]. Additional weak Hg‐N contacts [Hg‐N(4) = 2.662(9) and Hg‐N(3) = 2.851(9) Å] and an intramolecular hydrogen bond between the triazenide hydrogen and an O atom of the nitrate group are observed [N(6)‐H(6)···O(2) = 2.92(2) Å]. The complexes are stacked to infinite chains by metal‐arene π‐interactions. Each Hg atom is coordinated by the terminal phenyl rings of two neighboring complexes [Hg‐C from 3.40(1) to 4.10(1) Å] in a η2 fashion.  相似文献   

5.
The title compound, [Hg(C4H4N2S)(C4H3N2S)]2[HgBr4], con­sists of [Hg(pymt)(pymtH)]+ complex cations (pymtH is pyrimidine‐2‐thione) lying across twofold rotation axes in space group Fddd, with linearly coordinated mercury at an Hg—S distance of 2.357 (3) Å, and [HgBr4]2− anions lying at sites of 222 symmetry. The Hg atom is additionally coordinated by two N and two Br atoms, forming a 2+4 effective coordination sphere. The protonated ligand is connected via N—H⋯N hydrogen bonds to the neighbouring unprotonated ligand, thus forming infinite chains of cations.  相似文献   

6.
The title compound, [Sn(C5H5NS)2(C2H4S2)2], was obtained from a 1:2 mixture of bis­(ethane‐1,2‐di­thiol­ato)­tin(IV) and 2‐mercapto­pyridine. The mol­ecules are discrete monomeric trans‐octahedral units, with the SnIV atom at the centre of symmetry, planar 2‐mercapto­pyridine zwitterions and SnS2C2 groups in twist–envelope conformations. The 2‐mercapto­pyridine ligands are monodentate and are bonded through the S atoms. The S—Sn distances between the S atom of edt (edt is ethane‐1,2‐di­thiol­ate) and the Sn atom are 2.473 (1) and 2.505 (1) Å, which are slightly longer than the S—Sn distance in Sn(edt)2 of 2.390 (1) Å. The bond between the 2‐mercapto­pyridine S atom and the Sn atom are, remarkably, weaker than the S—Sn bond involving edt.  相似文献   

7.
The interaction of trimeric perflu‐ oro‐ortho‐phenylene mercury ( 1 ) with bis(2‐hydroxy‐ ethyl)sulfide (S((CH2)2OH)2) in dichloromethane and methylparathion (SP(OMe)2(p‐C6H4NO2)) in 1,2‐dichloroethane leads to the crystallization of [ 1 ⋅ (S((CH2)2OH)2)] and [ 1 ⋅ (μ3‐SP(OMe)2(p‐C6H4‐ NO2))2], respectively. These two adducts have been characterized by elemental analysis and single crystal X‐ray diffraction. The structure of [ 1 ⋅ S((CH2)2OH)2] shows that the bis(2‐hydroxyethyl)sulfide molecule interacts with the mercury centers of 1 by formation of a Hg–S interaction of 3.138(4) Å. Association of the two components is further strengthened by the coordination of one of the oxygen atoms of the bis(2‐hydroxyethyl)sulfide molecule. This oxygen atom interacts simultaneously with three mercury centers of 1 with Hg–O distances ranging from 2.889(8) to 3.142(9) Å. In the lattice, molecules of [ 1 ⋅ (S((CH2)2OH)2)] associate with compact cofacial dimers with Hg–Hg metallophilic contacts of 3.794 Å and 4.076 Å. The structure of [ 1 ⋅ (μ3‐SP(OMe)2(p‐C6H4NO2))2] is that of a 2:1 complex in which two molecules of methylparathion are triply coordinated via their sulfur atom to the mercury centers of 1 on either side of the molecular plane. The Hg–S contacts fall within the range of 3.278 and 3.651 Å. © 2005 Wiley Periodicals, Inc. 16:292–297, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20125  相似文献   

8.
The title compounds, bis­[1,2‐dicarba‐closo‐dodecaboran(12)‐1‐yl]­mercury(II) di­chloro­methane solvate, [Hg(C2B10H11)2]·CH2Cl2, (I), and bis­[1,12‐dicarba‐closo‐dodecaboran(12)‐1‐yl]­mercury(II) tetra­hydro­furan solvate, [Hg(C2B10H11)2]·C4H8O, (II), were prepared in excellent yields using a robust synthetic procedure involving the reaction of HgCl2 with the appropriate monoli­thiocarborane. X‐Ray analysis of the products revealed strong interactions between the Hg atoms in both complexes and the respective lattice solvent. The distances between the HgII centers and the Cl atoms of the dichloromethane solvent molecule in the ortho‐carborane derivative, (I), and the O atom of the tetra­hydro­furan molecule in the para‐carborane complex, (II), are shorter than the sums of the van der Waals radii for Hg and Cl (3.53 Å), and Hg and O (3.13 Å), respectively, indicating moderately strong interactions. There are two crystallographically independent mol­ecules in the asymmetric unit of both compounds, which, in each case, are related by differing relative positions of the cages.  相似文献   

9.
The asymmetric unit of the title polymeric complex, [HgBr(C6H4NO2)]n or HgBr(nic), contains mercury coordinated via two Br atoms [Hg—Br = 2.6528 (9) and 2.6468 (9) Å], two carboxyl­ate O atoms, which form a characteristic four‐membered chelate ring [Hg—O = 2.353 (6) and 2.478 (7) Å], and an N atom [Hg—N = 2.265 (5) Å], in the form of a very irregular (3+2)‐coordination polyhedron. The pronounced irregularity of the effective Hg (3+2)‐coordination is a result of the rigid stereochemistry of the nicotinate ligand. According to the covalent and van der Waals radii criteria, the strongest bonds are Hg—Br and Hg—N. These covalent interactions form a two‐dimensional poly­mer. The puckered planes are connected by van der Waals interactions, and there are only two intermolecular C—H⋯O hydrogen bonds [3.428 (10) and 3.170 (10) Å].  相似文献   

10.
The mol­ecule of the title compound, C19H20O2S, corresponds to a chiral sulfinyldienol with two stereogenic centres, viz. the C atom susbtituted by the hydr­oxy group and the sulfinyl S atom. The mol­ecule displays a V‐shape in the solid state. The dihedral angle defined by the least‐squares planes of the aromatic rings is 72.9 (1)°. The packing pattern exhibits the following inter­molecular hydrogen bonds: one O—H⋯O [H⋯O = 1.98 Å, O⋯O = 2.785 (4) Å and O—H⋯O = 166°] and two C—H⋯O [H⋯O = 2.58 and 2.60 Å, C⋯O = 3.527 (5) and 3.347 (5) Å, and C—H⋯O = 164 and 134°]. These define a chain along b.  相似文献   

11.
The title compound, [HgBr(C7H4NO4)(H2O)], was obtained by the reaction of an aqueous solution of mercury(II) bromide and pyridine‐2,6‐di­carboxylic acid (picolinic acid, dipicH2). The shortest bond distances to Hg are Hg—Br 2.412 (1) Å and Hg—N 2.208 (5) Å; the corresponding N—Hg—Br angle of 169.6 (1)° corresponds to a slightly distorted linear coordination. There are also four longer Hg—O interactions, three from dipicH? [2.425 (4) and 2.599 (4) Å within the asymmetric unit, and 2.837 (4) Å from a symmetry‐related mol­ecule] and one from the bonded water mol­ecule [2.634 (4) Å]. The effective coordination of Hg can thus be described as 2+4. The mol­ecules are connected to form double‐layer chains parallel to the y axis by strong O—H?O hydrogen bonds between carboxylic acid groups of neighbouring mol­ecules, and by weaker hydrogen bonds involving both H atoms of the water mol­ecule and the O atoms of the carboxylic acid groups.  相似文献   

12.
The crystal structures of tris(2‐methyl­quinolin‐8‐olato‐N,O)­iron(III), [Fe­(C10­H8­NO)3], (I), and aqua­bis(2‐methyl­quinolin‐8‐olato‐N,O)­copper(II), [Cu­(C10­H8NO)2­(H2O)], (II), have been determined. Compound (I) has a distorted octahedral configuration, in which the central Fe atom is coordinated by three N atoms and three O atoms from three 2‐methylquinolin‐8‐olate ligands. The three Fe—O bond distances are in the range 1.934 (2)–1.947 (2) Å, while the three Fe—N bond distances range from 2.204 (2) to 2.405 (2) Å. In compound (II), the central CuII atom and H2O group lie on the crystallographic twofold axis and the coordination geometry of the CuII atom is close to trigonal bipyramidal, with the three O atoms in the basal plane and the two N atoms in apical positions. The Cu—N bond length is 2.018 (5) Å. The Cu—O bond length in the basal positions is 1.991 (4) Å, while the Cu—O bond length in the apical position is 2.273 (6) Å. There is an intermolecular OW—H?O hydrogen bond which links the mol­ecules into a linear chain along the b axis.  相似文献   

13.
In the title complex, poly[copper(II)‐di‐μ‐5‐carboxy‐1H‐imidazole‐4‐carboxyl­ato], [Cu(C5H3N2O4)2]n or [Cu(H2Imda)2]n, each imidazole moiety is bonded to the Cu atom via O and N atoms to give a square‐planar coordination [Cu—O = 2.014 (2) and 2.016 (2) Å, and Cu—N = 1.982 (3) and 1.992 (2) Å]. The distorted square‐pyramidal geometry at the Cu atom results from coordination to an adjacent O atom [Cu—O = 2.305 (2) Å], which generates zigzag chains. There is a sixth, weaker, octahedral coordination to the Cu atom from an inversion‐related O atom [Cu—O = 3.090 (2) Å], which links the chains into sheets in the (100) plane. Imidazole moieties in the sheets are linked in the [100] direction by pairs of N—H⋯O and C—H⋯O hydrogen bonds, thus generating a three‐dimensional network.  相似文献   

14.
The title compound, [Cu(C9H5N2O3)2(C2H6OS)2], consists of octahedrally coordinated CuII ions, with the 3‐oxo‐3,4‐dihydroquinoxaline‐2‐carboxylate ligands acting in a bidentate manner [Cu—O = 1.9116 (14) Å and Cu—N = 2.1191 (16) Å] and a dimethyl sulfoxide (DMSO) molecule coordinated axially via the O atom [Cu—O = 2.336 (5) and 2.418 (7) Å for the major and minor disorder components, respectively]. The whole DMSO molecule exhibits positional disorder [0.62 (1):0.38 (1)]. The octahedron around the CuII atom, which lies on an inversion centre, is elongated in the axial direction, exhibiting a Jahn–Teller effect. The ligand exhibits tautomerization by H‐atom transfer from the hydroxyl group at position 3 to the N atom at position 4 of the quinoxaline ring of the ligand. The complex molecules are linked through an intermolecular N—H...O hydrogen bond [N...O = 2.838 (2) Å] formed between the quinoxaline NH group and a carboxylate O atom, and by a weak intermolecular C—H...O hydrogen bond [3.392 (11) Å] formed between a carboxylate O atom and a methyl C atom of the DMSO ligand. There is a weak intramolecular C—H...O hydrogen bond [3.065 (3) Å] formed between a benzene CH group and a carboxylate O atom.  相似文献   

15.
Reactions of divalent Zn‐Hg metal ions with 1,3‐imidazolidine‐2‐thione (imdtH2) in 1 : 2 molar ratio have formed monomeric complexes, [Zn(η1‐S‐imdtH2)2(OAc)2] ( 1 ), [Cd((η1‐SimdtH2)2I2] ( 2 ), [Cd(η1‐S‐imdtH2)2Br2] ( 3 ), and [Hg(η1‐S‐imdtH2)2I2] ( 4 ). Complexes 1 – 4 , have been characterized by elemental analysis (C, H, N), spectroscopy (IR, 1H, NMR) and x‐ray crystallography ( 1 ‐ 4 ). Hydrogen bonding between oxygen of acetate and imino hydrogen of ligand, {N(2)–H(2C)···O(2)#} in 1 , ring CH and imino hydrogen, {C(2A)–H(2A)···Br(2)#} in 3 have formed H‐bonded dimers. Similarly, the interactions between molecular units of complexes 2 and 4 have yielded 2D polymers. The polymerization occurs via intermolecular interactions between thione sulfur and imino hydrogen, {N(2)–H(2)···S(1)#}, imino hydrogen and the iodine atom, {NH(1)···I(2)#} in 2 and imino hydrogen – iodine atom {N(2A)–H(2A)···I(2)} and I···I interaction in 4 . Crystal data: [Zn(η1‐S‐imdtH2)2(OAc)2] ( 1 ), C10H18N4O4S2Zn, orthorhombic, Pbcn, a = 9.3854(7) Å, b = 12.4647(10) Å, c = 13.2263(11) Å; V = 1547.3(2) Å3, Z = 4, R = 0.0280 [Cd((η1‐S‐imdtH2)2I2] ( 2 ), C6H12CdI2N4S2, orthorhombic, Pnma, a = 13.8487(10) Å, b = 14.4232(11) Å, c = 7.0659(5) Å; Z = 4, V = 1411.36(18) Å3, R = 0.0186.  相似文献   

16.
The title compound, [Nd(C7H3O6S)(H2O)]n or [Nd(SSA)(H2O)]n (H3SSA is 5‐sulfosalicylic acid), was synthesized by the hydrothermal reaction of Nd2O3 with H3SSA in water. The compound forms a three‐dimensional network in which the asymmetric unit contains one NdIII atom, one SSA ligand and one coordinated water mol­ecule. The central NdIII ion is eight‐coordinate, bonded to seven O atoms from five different SSA ligands [Nd—O = 2.405 (4)–2.612 (4) Å] and one aqua O atom [Nd—OW = 2.441 (4) Å].  相似文献   

17.
In the title compound, [Pt(C18H15P)(C28H28P2S)]­(ClO4)2·­C3H6O or [Pt(PPh3)(PSP)](ClO4)2·CH3COCH3, where PSP is the potentially tridentate chelate ligand bis(2‐di­phenyl­phosphinoethyl) sulfide, all three donor groups of the PSP ligand are coordinated to the central Pt atom, with Pt—P = 2.310 (1) Å and Pt—S = 2.343 (1) Å. The fourth coordination site is occupied by the P donor of the tri­phenyl­phosphine ligand [Pt—P = 2.289 (1) Å]. The complex cation has exact mirror symmetry, with the S atom, the Pt atom and the P atom of the PPh3 ligand in the mirror plane. The Pt atom has a distorted square‐planar coordination geometry. A π–π interaction is present between the phenyl rings of the PPh3 ligand and the terminal –PPh2 group of the PSP chelate.  相似文献   

18.
In catena‐poly­[[(di‐2‐pyridyl­amine‐κ2N,N′)silver(I)]‐μ‐nico­tinato‐κ2N:O], [Ag(C6H4NO2)(C10H9N3)]n, the AgI atom is tetracoordinated by two N atoms from the di‐2‐pyridyl­amine (BPA) ligand [Ag—N = 2.3785 (18) and 2.3298 (18) Å] and by one N atom and one carboxyl­ate O atom from nicotinate ligands [Ag—N = 2.2827 (15) Å and Ag—O = 2.3636 (14) Å]. Bridging by nicotinate N and O atoms generates a polymeric chain structure, which extends along [100]. The carboxyl O atom not bonded to the Ag atom takes part in an intrachain C—H⋯O hydrogen bond, further stabilizing the chain. Pairs of chains are linked by N—H⋯O hydrogen bonds to generate ribbons. There are no π–π interactions in this complex. In catena‐poly­[[(di‐2‐pyridyl­amine‐κ2N,N′)silver(I)]‐μ‐2,6‐di­hydroxy­benzoato‐κ2O1:O2], [Ag(C7H5O4)(C10H9N3)]n, the AgI atom has a distorted tetrahedral coordination, with three strong bonds to two pyridine N atoms from the BPA ligand [Ag—N = 2.286 (5) and 2.320 (5) Å] and to one carboxyl­ate O atom from the 2,6‐di­hydroxy­benzoate ligand [Ag—O = 2.222 (4) Å]; the fourth, weaker, Ag‐atom coordination is to one of the phenol O atoms [Ag⋯O = 2.703 (4) Å] of an adjacent moiety, and this interaction generates a polymeric chain along [100]. Pairs of chains are linked about inversion centers by N—H⋯O hydrogen bonds to form ribbons, within which there are π–π interactions. The ribbons are linked about inversion centers by pairs of C—H⋯O hydrogen bonds and additional π–π interactions between inversion‐related pairs of 2,6‐di­hydroxy­benzoate ligands to generate a three‐dimensional network.  相似文献   

19.
The title compound, [Hg(C6H4NO2)I(C6H5NO2)], has twofold symmetry along the Hg—I bond. The HgII ion coordinates one I atom [at 2.6045 (4) Å], two N and two O atoms [at 2.298 (3) and 2.481 (2) Å] from one picolinate ion, and one picolinic acid mol­ecule in a very irregular trigonal–bipyramidal coordination. The single hydr­oxy H atom required for chemical neutrality is both statistically (by crystal symmetry) and structurally disordered, and is involved in an inter­molecular O—H⋯O hydrogen bond [O⋯O = 2.455 (4) Å], connecting the mol­ecules into one‐dimensional infinite chains along the [101] direction.  相似文献   

20.
In the title molecular complex, [Cu4Cl6O(2‐EtTz)4], where 2‐EtTz is 2‐ethyl­tetrazole (C3H6N4), the central O atom is located on the symmetry site and is tetrahedrally coordinated to four Cu atoms, with Cu—O distances of 1.8966 (4) Å. A very slight distortion of Cu4O from a regular tetrahedron is observed [two Cu—O—Cu angles are 108.76 (3)° and four others are 109.828 (13)°]. Each Cu atom is connected to three others via the Cl atoms, forming a slightly distorted Cl octahedron around the O atom, with O⋯Cl distances of 2.9265 (7) Å for Cl atoms lying on the twofold axis and 2.9441 (13) Å for those in general positions. The Cu atom has a distorted trigonal–bipyramidal environment, with three Cl atoms in the equatorial plane, and with the N atom of the 2‐ethyl­tetrazole ligand and the μ4‐O atom in axial positions. The Cu atom is displaced out of the equatorial plane by ca 0.91 Å towards the coordinated N atom of the 2‐­ethyl­tetrazole ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号