首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
A simple and generally applicable new synthetic method to prepare second‐order nonlinear optical (NLO) polyimides has been developed. In this approach, side‐chain‐substituted polyimides were synthesized via isocyanato‐terminated prepolymers prepared directly from NLO chromophore‐containing diols Disperse Red 19. Using this technique, the tedious synthesis of the classical diamine monomers and harsh imidization process associated with polyamic acid prepolymers are avoided. The resulting polymers possessed good solubility and high glass‐transition (171–211 °C) and thermal‐decomposition temperatures. The polymers also exhibited excellent film‐forming properties, and good optical‐quality films were easily obtained by spin coating. The second‐order NLO activities of the polymer films were also studied, and several factors that might determine the growth of the second‐order NLO activity were proposed. The polymers obtained exhibit a large second‐order NLO activity (34–52.5 pm/V at 1064 nm). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2189–2195, 2001  相似文献   

2.
A thermal stable aromatic polyimide (PI) with side‐chain second‐order nonlinear optical (NLO) chromophores has been developed. The PI was prepared by the ring‐opening polyaddition of 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride with a new diamine having two N‐ethyl‐N‐[4‐[(6‐chlorobenzothiazol‐2‐yl)diazenyl]phenyl]‐2‐aminoethanol units as the NLO chromophore, followed by poling during or after the thermal imidization process. The resulting PI had number and weight‐average molecular weights (Mn, Mw) of 25,000 and 80,000, respectively, and a relatively high glass transition temperature of 180°C. The second harmonic coefficient (d33) of PI at the wavelength of 1.064 μm was 138 pm/V (329.6 × 10−9 esu) and remained unchanged at elevated temperatures. The corona poling process of the NLO‐substituted poly(amic acid) to the PI was also studied in detail by measuring the second harmonic generation (SHG) from the polymer films. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1321–1329, 1999  相似文献   

3.
Side-chain second-order nonlinear optical polyimides were prepared from four novel chromophore-containing diamines and 4,4′-(hexafluoroisopropylidene) diphthalic anhydride by a traditional two-step process that included a solution polycondensation followed by a chemical imidization. The four diamines were 2,4-di-β-aminoethylamino-6-p-nitrophenylamino-1,3,5-triazine (M1), 4-nitro-4′-[N-(4,6-di-β-aminoethylamino)-1,3,5-triazin-2-yl]amino azobenzene (M2), 2,4-di-p-aminophenylamino-6-p-nitrophenylamino-1,3,5-triazine (M3), and 4-nitro-4′-[N-(4,6- di-4-aminophenylamino)-1,3,5-triazin-2-yl]amino azobenzene (M4). All the polyimides exhibited maximum ultraviolet-visible absorption peaks or shoulders of chromophores at wavelengths below 400 nm, and those based on M1 and M3 were transparent at wavelengths above 450 nm, whereas those based on M2 and M4 were transparent at wavelengths above 550 nm. The polyimides possessed high glass-transition temperatures (Tg's; 218–247 °C) and thermal decomposition temperatures. They were soluble in aprotic solvents such as N-methyl-2-pyrrolidone, N,N-dimethyl acetamide, N,N-dimethyl formamide, and dimethylsulfone. Some were even soluble in common low-boiling-point solvents such as tetrahydrofuran. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4330–4336, 1999  相似文献   

4.
We report the characterization of copolymers of methyl methacrylate (MMA) and 2‐propenoic acid, 2‐methyl‐, 2‐[[[[4‐methyl‐3‐[[(2‐methyl‐4‐nitrophenyl)amino]carbonyl]aminophenyl]carbonyl]oxy]ethyl ester (PAMEE) exhibiting nonlinear optical (NLO) properties. The linear copolymer, poly(MMA‐co‐PAMEE), with a NLO chromophore incorporated into PAMME exhibits a high glass transition temperature of 131°C, as determined by DSC. The thin films of copolymers, which were cast on microscopic glass slides, were optically transparent, and the corona poled polymers produced relatively large and stable second harmonic generation (SHG) signals at room temperature. The nonlinear coefficient d33 of the crosslinked copolymer containing 30 wt % PAMEE was 30.8 pm/V. The SHG signal strength remained unchanged, even after 120 days, and exhibited excellent thermal stability at 65°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1245–1254, 1999  相似文献   

5.
A series of polyimides were prepared by a solution polycondensation reaction between 3‐carboxylmethylcyclopentane‐1,2,4‐tricarboxylic dianhydride and 4‐alkyloxybenzene‐1,3‐diamines in N‐methyl‐2‐pyrrolidone and chemical imidization with triethylamine and acetic anhydride. These polyimides possess great organo‐solubility, high optical transparency, and high pretilt angles. They are soluble not only in strong polar aprotic organic solvents such as N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide, m‐cresol, and 1,4‐butyrolactone but also in common low‐boiling‐point solvents such as chloroform and tetrahydrofuran, and some are even soluble in acetone. They exhibit high transparency at wavelengths greater than 320 nm. They can generate pretilt angles greater than 5°, and some can even achieve pretilt angles greater than 10°. The pretilt angle of a polyimide increases with the increasing length of the alkyloxy side group. The polyimides possess glass‐transition temperatures between 180 and 230 °C and thermal decomposition temperatures (onset temperatures) of about 435 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1943–1950, 2000  相似文献   

6.
A series of crossslinked organic and organic/inorganic polymers based on maleimide chemistry have been investigated for second‐order non‐linear optical (NLO) materials with excellent thermal stability and low optical loss. Two reactive chromophores (maleimide‐containing azobenzene dye and alkoxysilane‐containing azobenzene dye) were incorporated into a phosphorus‐containing maleimide polymer, respectively. The selection of the phosphorus‐containing maleimide polymer as the polymeric matrices provides enhanced solubility and thermal stability, and excellent optical quality. Moreover, a full interpenetrating network (IPN) was formed through simultaneous addition reaction of the phosphorus‐containing maleimide, and sol‐gel process of alkoxysilane dye (ASD). Atomic force microscopy (AFM) results indicate that the inorganic networks are distributed uniformly throughout the polymer matrices on a nano‐scale. The silica particle sizes are well under 100 nm. Using in situ contact poling, the r33 coefficients of 2.2–17.0 pm/V have been obtained for the optically clear phosphorus‐containing NLO materials. Excellent temporal stability (100°C) and low optical loss (0.99–1.71 dB/cm; 830 nm) were also obtained for these phosphorus‐containing materials. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
The density functional and ab initio theory were used to investigate the second‐order nonlinear optical (NLO) properties of Schiff base ligands, open‐shell Fe(III), and closed‐shell Ni(II) complexes. The effect of the metal center in complexes is thus manifold: it templates the formation of acentric structures, imparts high thermal stability to the chelate ring, and display higher second‐order NLO response than their ligands. The second‐order NLO response of metal complexes are intensively sensitive to the exchange donor/acceptor because the differences of the extent of charge separation and the intraligand charge transfer processes. Thus, substituted metal complexes could realize “switches on” the second‐order NLO response by exchange donor/acceptor. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

8.
A cadmium complex bis(benzyltriethylammonium) bis(1,3‐dithiole‐2‐thione‐4,5‐dithiolato)‐cadmium(II) ((TEBA)2[Cd(DMIT)2]) has been synthesized and its crystal structure has been determined by means of X‐ray single‐crystal diffraction. The central cadmium(II) ion coordinates with two DMIT, which constructed a distorted tetrahedron environment. Its third‐order nonlinear optical properties have been studied using Z‐scan technique with 20 ps pulses at wavelength 1064 nm. Its third‐order nonlinear susceptibility χ(3) value was determined to be 1.24 × 10−19 m2 V−2, the figure of merit, χ(3)/α0, was estimated to be 2.64 × 10−20 m3 V−2. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
A series of dicyanomethylene‐substituted polymers having Y‐type molecular architecture were synthesized by Knoevenagel condensation reaction. The polymers were found to be soluble in organic solvents like tetrahydrofuran and chloroform. From gel permeation chromatography, the molecular weights of the polymers were found to be in the range of 15,300–33,800 g/mol. Thermal analysis showed that the polymers were stable up to 350 °C with glass transition temperature (Tg) in the range of 129–212 °C. These polymers were found to form good optical quality films. The order parameter was calculated to be in the range of 0.01–0.48. Atomic force microscopy indicated prominent morphology changes due to alignment of dipoles after poling. By using Nd:YAG laser of 1064 nm, angular dependence and temperature dependence of second‐harmonic generation intensity were investigated. The geometry optimization, shape of polymers, and restricted torsion angle between acceptor and donor substituents (push–pull system) were calculated. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

10.
A stable nonlinear optical (NLO) film containing “T” type alkoxysilane dye was prepared by sol–gel technology. This crosslinked “T” type alkoxysilane dye was synthesized and fully characterized by FTIR, UV–Vis spectra, and 1H‐NMR. Followed by hydrolysis and copolymerization processes of the alkoxysilane with γ‐glycidoxypropyl trimethoxysilane (KH560) and tetraethoxysilane (TEOS), high quality inorganic–organic hybrid second‐order NLO films were obtained by spin coating. The “T” type structure of the alkoxysilane was found to be effective for improving the temporal stability of the optical nonlinearity due to the reduction in the relaxation of the chromophore in the film materials. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Four linear polymers containing pendant azo moiety were synthesized through click chemistry for second‐order nonlinear optical study. The polymers were found soluble in most of the polar organic solvents such as tetrahydrofuran (THF), chloroform, and dimethyl formamide (DMF). The polymers showed thermal stability up to 300 °C and glass transition temperatures (Tg) in the range of 120–140 °C. The molecular weights (Mw) of these polymers (measured by gel permeation chromatography) were in the range 37,900–55,000 g/mol. The polymers were found to form optically transparent films by solution casting from THF solution. Order parameters were calculated from UV–vis absorption spectra. The morphology changes in the films after poling were characterized by atomic force microscopy. The angular dependence, temperature dependence, and time dependence of second harmonic generation (SHG) intensity were obtained by using 1064 nm Nd:YAG laser. The SHG intensity remained unchanged up to 95 °C. At room temperature, it remained stable up to 8 days after initial drop of about 14%. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
Density functional theory calculations have been carried out on nonconjugated D‐π‐A chromophores to investigate the different electron donors and conjugated bridges effects on the molecular nonlinear optical response. The results show that the large second‐order polarizability values can be achieved through careful combination of available electron donors, conjugated bridges for our studied nonconjugated D‐π‐A chromophores. The calculations also provide a clear explanation for the second‐order polarizability changes from the standpoint of transition energies, oscillator strengths, electron density difference, and bond length alternation. Solvent effect has great influence on the second‐order polarizability and electronic absorption spectrum. It is hoped that the results presented in this article will give some hints to the interrelated studies. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

13.
The orientation of the side‐chain liquid‐crystalline polymers (LCP) containing phenylbenzoate mesogenic groups in the magnetic field was examined with 2H NMR spectroscopy. The influence of the degree of polymerization as well as the length of the methylene tail group (n = 1–4) have been established. The decrease of the order parameter S of the LCPs with an increased length of the tail group was found. The order parameter S of LCPs does not depend on the degree of polymerization. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2044–2048, 2002  相似文献   

14.
Recent results concerning the synthesis of new main‐chain syndioregic nonlinear optical polymers are presented. In particular, the synthesis of polymers with extended pi conjugation in the chromophore and chromophores with improved thermal stability are presented. The nonlinear optical coefficient of several of the polymers and the optical loss at 1.3 and 1.55 μm were measured and are discussed. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2824–2839, 2000  相似文献   

15.
Isotropic and anisotropic magnetizabilities for noble gas atoms and a series of singlet and triplet molecules were calculated using the second‐order Douglas‐Kroll‐Hess (DKH2) Hamiltonian containing the vector potential A and in part using second‐order generalized unrestricted Møller‐Plesset (GUMP2) theory. The DKH2 Hamiltonian was resolved into three parts (spin‐free terms, spin‐dependent terms, and magnetic perturbation terms), and the magnetizabilities were decomposed into diamagnetic and paramagnetic terms to investigate the relativistic and electron‐correlation effects in detail. For Ne, Kr, and Xe, the calculated magnetizabilities approached the experimental values, once relativistic and electron‐correlation effects were included. For the IF molecule, the magnetizability was strongly affected by the spin‐orbit interaction, and the total relativistic contribution amounted to 22%. For group 17, 16, 15, and 14 hydrides, the calculated relativistic effects were small (less than 3%), and trends were observed in relativistic and electron‐correlation effects across groups and periods. The magnetizability anisotropies of triplet molecules were generally larger than those of similar singlet molecules. The so‐called relativistic‐correlation interference for the magnetizabilities computed using the relativistic GUMP2 method can be neglected for the molecules evaluated, with exception of triplet SbH. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

16.
Two formulas of grafted polymers with metal‐containing chromophores, potentially suitable for second‐order nonlinear optics applications, are described. Two chromophores were obtained from a tridentate ligand coordinated to Cu(II) or Pd(II) ions. The organometallic chromophore fragments were grafted to poly(4‐vinylpyridine) by the pyridinic nitrogen of the host polymer. Some qualities displayed by the new metallated polymers are remarkable: (1) a high value of the first hyperpolarizability coefficient of the chromophores, (2) a high content of the grafted chromophore in the polymers (up to 60 wt %), (3) a considerable increase in the glass‐transition temperatures (up to 240 °C), (4) good thermal stability in air (ca. 280 °C), and (5) good optical transparency of the films. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2987–2993, 2002  相似文献   

17.
This article presents the molecular orientation and second‐order optical nonlinearity of newly prepared polyureas and copolyurea with dipole moments aligned transverse to the main backbone. Nonlinear optical (NLO) polyureas, TPU and TPU2, were prepared from 2,4‐diamino‐4′‐nitroazobenzene (2R‐DIAMINE) with 4,4′‐diphenylmethane diisocyanate (DMDI) and tolylene 2,4‐diisocyanate, respectively. NLO copolyurea was prepared from DMDI with 2R‐DIAMINE and m‐phenylene diamine. TPU and TPU2 gave d33 values of 12.5 and 9.8 pm/V, respectively, under optimum poling conditions. A time‐dependent decay curve of second‐order nonlinear susceptibility was fitted well with a Kohlrausch–Williams–Watts stretched exponential function. The relaxation time of TPU2 was 4.2 × 108 s at 100 °C. Copolyurea was uniaxially drawn in ratios of 1.5 and 2.0. The average molecular angles ΦX , ΦY , and ΦZ in three laboratory frames were evaluated from the refractive indices. ΦY decreased and ΦX and ΦZ increased with an increasing draw ratio. The dependence of the second‐order harmonic intensity on the incidence angle, that is, the Maker fringe pattern, was fitted with two independent tensor components, d33 and d31, for undrawn film and five independent tensor components, d33, d32, d31, d15, and d24, for drawn films. For drawn films, Kleinman symmetry was not satisfied: d31d15 and d32d24. An increase in the draw ratio gave rise to a large increase in the tensor component d33. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 247–255, 2001  相似文献   

18.
New Schiff bases of 2,4‐dihydroxybenzaldehyde with siloxane‐α,ω‐diamines having different numbers of siloxane units in the chain have been synthesized and characterized by spectroscopy, elemental and thermal analyses. These azomethines were found to form complexes readily with copper(II), nickel(II), cobalt(II), cadmium(II) and zinc(II). From IR and UV–Vis studies, the phenolic oxygen and imine nitrogen of the ligand were found to be the coordination sites. Thermogravimetric analysis (TGA) data indicate the chelates to be more stable than the corresponding ligands. The melting points increase with shortening of the siloxane segment from azomethine, as well as the result of complexation. The chelates obtained were covalently inserted in polymeric linear structures by polycondensation through the OH‐difunctionalized ligand with 1,3‐bis(carboxypropyl)tetramethyldisiloxane. Direct polycondensation, assisted either by acetic anhydride or N,N′‐dicyclohexylcarbodiimide as dehydrating agent and the complex 4‐(dimethylamino)pyridinium 4‐toluenesulfonate as catalyst, was used for the synthesis of these compound types. The structures of the polymers obtained were confirmed by IR, UV and 1H NMR. Characterization was undertaken by TGA, solubility tests and viscosity measurements. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
π‐Conjugated organic materials exhibit high and tunable nonlinear optical (NLO) properties, and fast response times. 4′‐Phenyl‐2,2′:6′,2′′‐terpyridine (PTP) is an important N‐heterocyclic ligand involving π‐conjugated systems, however, studies concerning the third‐order NLO properties of terpyridine transition metal complexes are limited. The title binuclear terpyridine CoII complex, bis(μ‐4,4′‐oxydibenzoato)‐κ3O,O′:O′′;κ3O′′:O,O′‐bis[(4′‐phenyl‐2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)cobalt(II)], [Co2(C14H8O5)2(C21H15N3)2], (1), has been synthesized under hydrothermal conditions. In the crystal structure, each CoII cation is surrounded by three N atoms of a PTP ligand and three O atoms, two from a bidentate and one from a symmetry‐related monodentate 4,4′‐oxydibenzoate (ODA2−) ligand, completing a distorted octahedral coordination geometry. Neighbouring [Co(PTP)]2+ units are bridged by ODA2− ligands to form a ring‐like structure. The third‐order nonlinear optical (NLO) properties of (1) and PTP were determined in thin films using the Z‐scan technique. The title compound shows a strong third‐order NLO saturable absorption (SA), while PTP exhibits a third‐order NLO reverse saturable absorption (RSA). The absorptive coefficient β of (1) is −37.3 × 10−7 m W−1, which is larger than that (8.96 × 10−7 m W−1) of PTP. The third‐order NLO susceptibility χ(3) values are calculated as 6.01 × 10−8 e.s.u. for (1) and 1.44 × 10−8 e.s.u. for PTP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号