首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homogeneous and silica‐supported Cp2ZrCl2/methylaluminoxane (MAO) catalyst systems have been used for the copolymerization of ethylene with 1‐butene, 1‐hexene, 4‐methylpentene‐1 (4‐MP‐1), and 1‐octene in order to compare the “comonomer effect” obtained with a homogeneous metallocene‐based catalyst system with that obtained using a heterogenized form of the same metallocene‐based catalyst system. The results obtained indicated that at 70 °C there was general rate depression with the homogeneous catalyst system whereas rate enhancement occurred in all copolymerizations carried out with the silica‐supported catalyst system. Rate enhancement was observed for both the homogeneous and the silica‐supported catalyst systems when ethylene/4‐MP‐1 copolymerization was carried out at 50 °C. Active center studies during ethylene/4‐MP‐1 copolymerization indicated that the rate depression during copolymerization using the homogeneous catalyst system at 70 °C was due to a reduction in the active center concentration. However, the increase in polymerization rate when the silica‐supported catalyst system was used at the same temperature resulted from an increase in the propagation rate coefficient. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 267–277, 2008  相似文献   

2.
Cp2ZrCl2 confined inside the supercage of NaY zeolites [NaY/methylaluminoxane (MAO)/Cp2ZrCl2] exhibited the shape and diffusion of a monomer‐controlled copolymerization mechanism that strongly depended on the molecular structure of the monomer and its size. For the ethylene–propylene copolymerization, NaY/MAO/Cp2ZrCl2 showed the effect of the comonomer on the increase in the polymerization rate in the presence of propylene, whereas the ethylene/1‐hexene copolymerization showed little comonomer effect, and the ethylene/1‐octene copolymerization instead showed a comonomer depression effect on the polymerization rate. Isobutylene, having a larger kinetic diameter, had little influence on the copolymerization behaviors with NaY/MAO/Cp2ZrCl2 for the ethylene–isobutylene copolymerization, which showed evidence of the shape and diffusion of a monomer‐controlled mechanism. The content of the comonomer in the copolymer chain prepared with NaY/MAO/Cp2ZrCl2 decreased by about one‐half in comparison with that of Cp2ZrCl2. A differential scanning calorimetry study on the melting endotherms after the successive annealing of the copolymers showed that the copolymers of NaY/MAO/Cp2ZrCl2 had narrow comonomer distributions, whereas those of homogeneous Cp2ZrCl2 were broad. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2171–2179, 2003  相似文献   

3.
The influence of ligand structure on copolymerization properties of metallocene catalysts was elucidated with three C1‐symmetric methylalumoxane (MAO) activated zirconocene dichlorides, ethylene(1‐(7, 9)‐diphenylcyclopenta‐[a]‐acenaphthadienyl‐2‐phenyl‐2‐cyclopentadienyl)ZrCl2 ( 1 ), ethylene(1‐(7, 9)‐diphenylcyclopenta‐[a]‐acenaphthadienyl‐2‐phenyl‐2‐fluorenyl)ZrCl2 ( 2 ), and ethylene(1‐(9)‐fluorenyl‐(R)1‐phenyl‐2‐(1‐indenyl)ZrCl2 ( 3 ). Polyethenes produced with 1 /MAO had considerable, ca. 10% amount of trans‐vinylene end groups, resulting from the chain end isomerization prior to the chain termination. When ethene was copolymerized with 1‐hexene or 1‐hexadecene using 1 /MAO, molar mass of the copolymers varied from high to moderate (531–116 kg/mol) depending on the comonomer feed. At 50% comonomer feed, ethene/1‐olefin copolymers with high hexene or hexadecene content (around 10%) were achievable. In the series of catalysts, polyethenes with highest molar mass, up to 985 kg/mol, were obtained with sterically most crowded 2 /MAO, but the catalyst was only moderately active to copolymerize higher olefins. Catalyst 3 /MAO produced polyethenes with extremely small amounts of trans‐vinylene end groups and relatively low molar mass 1‐hexene copolymers (from 157 to 38 kg/mol) with similar comonomer content as 1 . These results indicate that the catalyst structure, which favors chain end isomerization, is also capable to produce high molar mass 1‐olefin copolymers with high comonomer content. In addition, an exceptionally strong synergetic effect of the comonomer on the polymerization activity was observed with catalyst 3 /MAO. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 373–382, 2008  相似文献   

4.
The study of ethylene/1‐hexene copolymerization with the zirconocene catalyst, bis(cyclopentadienyl)zirconium dichloride (Cp2ZrCl2)/methylaluminoxane (MAO), anchored on a MgCl2(THF)2 support was carried out. The influence of 1‐hexene concentration in the feed on catalyst productivity and comonomer reactivity as well as other properties was investigated. Additionally, the effect of support modification by the organoaluminum compounds [(MAO, trimethlaluminum (AlMe3), or diethylaluminum chloride (Et2AlCl)] on the behavior of the MgCl2(THF)2/Cp2ZrCl2/MAO catalyst in the copolymerization process and on the properties of the copolymers was explored. Immobilization of the Cp2ZrCl2 compound on the complex magnesium support MgCl2(THF)2 resulted in an effective system for the copolymerization of ethylene with 1‐hexene. The modification of the support as well as the kind of organoaluminum compound used as a modifier influenced the activity of the examined catalyst system. Additionally, the profitable influence of immobilization of the homogeneous catalyst as well as modification of the support applied on the molecular weight and molecular weight distribution of the copolymers was established. Finally, with the successive self‐nucleation/annealing procedure, the copolymers obtained over both homogeneous and heterogeneous metallocene catalysts were heterogeneous with respect to their chemical composition. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2512–2519, 2004  相似文献   

5.
The effect of the copolymerization temperature and amount of comonomer in the copolymerization of ethylene with 1,3‐cyclopentadiene, dicyclopentadiene, and 4‐vinyl‐1‐cyclohexene and the rac‐Et[Ind]2ZrCl2–methylaluminoxane metallocene system was studied. The amount of comonomer present in the reaction media influenced the catalytic activity. Dicyclopentadiene was the most reactive comonomer among the cyclic dienes studied. In general, copolymers synthesized at 60 °C showed higher catalytic activities. Ethylene–dicyclopentadiene copolymers with high comonomer contents (>9%) did not show melting temperatures. 1,3‐Cyclopentadiene dimerized into dicyclopentadiene during the copolymerization, giving a terpolymer of ethylene, cyclopentadiene, and dicyclopentadiene. A complete characterization of the products was carried out with 1H NMR, 13C NMR, heteronuclear chemical shift correlation, differential scanning calorimetry, and gel permeation chromatography. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 471–485, 2002; DOI 10.1002/pola.10133  相似文献   

6.
Vinyl‐type copolymerization of norbornene (NBE) and 5‐NBE‐2‐yl‐acetate (NBE‐OCOMe) in toluene were investigated using a novel homogeneous catalyst system based on bis(β‐ketonaphthylamino)Ni(II)/B(C6F5)3/AlEt3. The copolymerization behavior as well as the copolymerization conditions, such as the levels of B(C6F5)3 and AlEt3, temperature, and monomer feed ratios, which influence on the copolymerization were examined. Without combination of AlEt3, the catalytic bis(β‐ketonaphthylamino)Ni(II)/B(C6F5)3 exhibited very high catalyst activity for polymerization of NBE. Combination of AlEt3 in catalyst system resulted in low conversion for polymerization of NBE. For copolymerization of NBE and NBE‐OCOMe, involvement of AlEt3 in catalyst is necessary. Slight addition of NBE‐OCOMe in copolymerization of NBE and NBE‐OCOMe gives rise to significant increase of catalyst activity for catalytic system bis(β‐ketonaphthylamino)Ni(II)/B(C6F5)3/AlEt3. Nevertheless, excess increase of the NBE‐OCOMe content in the comonomer feed ratios results in decrease of conversion as well as activity of catalyst. The achieved copolymers were confirmed to be vinyl‐addition copolymers through the analysis of FTIR, 1H NMR, and 13C NMR spectra. 13C NMR studies further revealed the composition of the copolymer and the incorporation rate was 7.6–54.1 mol % ester units at a content of 30–90 mol % of the NBE‐OCOMe in the monomer feeds ratios. TGA analysis results showed that the copolymer exhibited good thermal stability (Td > 410 °C) and failed to observe the glass transitions temperature over 300 °C. The copolymers are confirmed to be noncrystalline by WAXD analysis results and show good solubility in common organic solvents. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3990–4000, 2009  相似文献   

7.
The catalyst system i‐Pr(Cp)(9‐Flu)ZrCl2/methylaluminoxane was used for the synthesis of random syndiotactic copolymers of propylene with 1‐hexene, 1‐dodecene, and 1‐octadecene as comonomers. An investigation of the microstructure by 13C NMR spectroscopy revealed that the stereoregularity of the copolymers decreased because of an increase in skipped insertions in the presence of the higher 1‐olefin. The melting temperature of the copolymers, as measured by differential scanning calorimetry (DSC), decreased linearly with increasing comonomer content independently of the comonomer nature. During the DSC heating cycle, an exothermic peak indicating a crystallization process was observed. The decrease in the crystallization temperature with higher 1‐olefin content, measured by crystallization analysis fractionation, indicated a small but significant dependence on the nature of the comonomer. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 128–140, 2002  相似文献   

8.
A series of novel copolymers of trans‐4‐hydroxy‐L ‐proline (Hpr) and α‐ hydroxy acids [D,L ‐mandelic acid (DLMA) and D,L ‐lactic acid (DLLA)] were synthesized via direct melt copolymerization with stannous octoate as a catalyst. These new copolymers had pendant amine functional groups along the polymer backbone chain. The optimal reaction conditions for the synthesis of the copolymers were obtained with 4 wt % stannous octoate at 140 °C under vacuum for 16 h. The synthesized copolymers were characterized by IR spectrophotometry, proton nuclear magnetic resonance, differential scanning calorimetry, and Ubbelohde viscometry. The effects of the kinds of comonomers and the comonomer molar ratio on the polycondensation and glass‐transition temperature (Tg) were investigated. The Tg's of the copolymers shifted to lower temperatures with an increasing comonomer molar ratio. As expected, the Tg's of the NZ‐Hpr/DLMA copolymers were higher than the NZ‐Hpr/DLLA copolymers, the pendant groups on the monomers (NZ‐Hpr) became larger and more flexible, and the Tg's of the resulting polymers declined. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 724–731, 2001  相似文献   

9.
The asymmetric induction leading to a one‐handed helix was investigated in the anionic and radical copolymerization of triphenylmethyl methacrylate (TrMA) and (S)‐2‐isopropenyl‐4‐phenyl‐2‐oxazoline ((S)‐IPO), and highly isotactic copolymers with a reasonable optical activity were obtained. In the anionic copolymerization, the optical activity of the obtained copolymers depended on the polarity of solvents, and a highly optically active copolymer was produced in the copolymerization in toluene. The chiral oxazoline monomer functioned not only as a comonomer but also as a chiral ligand to endow the polymer with large negative optical rotation in the copolymerization with TrMA. The copolymers with small positive optical rotation were obtained in THF, indicating that IPO unit may work only as the chiral monomer that dictates the helical sense via copolymerization with TrMA. The isotacticity of the obtained copolymers depended on the contents of TrMA units in the copolymers, but was almost independent of the solvent for copolymerization. In the radical copolymerization, the obtained copolymers exhibited small optical activities. It seemed that the chiral monomer cannot induce one‐handed helical structure of TrMA sequences even if the sequences probably have a high isotacticity. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 441–447  相似文献   

10.
In this work, ethylene‐1‐hexene copolymers were synthesized with a tandem catalysis system that consisted of a new trimerization catalyst bis(2‐dodecylsulfanyl‐ethyl) amine‐CrCl3/MAO ( 1 /MAO) and copolymerization catalyst Et(Ind)2ZrCl2/MAO ( 2 /MAO) at atmosphere pressure. Catalyst 1 trimerized ethylene with high activity and excellent selectivity in the presence of a relatively low amount of MAO. Catalyst 2 incorporated the 1‐hexene content and produced ethylene‐1‐hexene copolymer from an ethylene‐only stock in the same reactor. Adjusting the Cr/Zr ratio and reaction temperature yielded various branching densities and thus melting temperatures. However, broad DSC curves were observed when low temperatures and/or high Cr/Zr ratios were employed due to an accumulation of 1‐hexene component and composition drifting during the copolymerization. It was found that a short pretrimerization period resulted in more homogeneous materials that gave unimodal DSC curves. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3562–3569, 2007  相似文献   

11.
Copolymerizations of ethylene with α‐olefins (i.e., 1‐hexene, 1‐octene, allylbenzene, and 4‐phenyl‐1‐butene) using the bis(β‐enaminoketonato) titanium complexes [(Ph)NC(R2)CHC(R1)O]2TiCl2 ( 1a : R1 = CF3, R2 = CH3; 1b : R1 = Ph, R2 = CF3; and 1c : R1 = t‐Bu, R2 = CF3), activated with modified methylaluminoxane as a cocatalyst, have been investigated. The catalyst activity, comonomer incorporation, and molecular weight, and molecular weight distribution of the polymers produced can be controlled over a wide range by the variation of the catalyst structure, α‐olefin, and reaction parameters such as the comonomer feed concentration. The substituents R1 and R2 of the ligands affect considerably both the catalyst activity and comonomer incorporation. Precatalyst 1a exhibits high catalytic activity and produces high‐molecular‐weight copolymers with high α‐olefin insertion. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6323–6330, 2005  相似文献   

12.
The copolymerization of propylene and 3‐buten‐1‐ol protected with alkylaluminum [trimethylaluminum (TMA) or triisobutylaluminum] was conducted with an isospecific zirconocene catalyst [rac‐dimethylsilylbis(1‐indenyl)zirconium dichloride], combined with methylaluminoxane as a cocatalyst, in the presence of additional TMA or H2 as the chain‐transfer reagent if necessary. The results indicated that end‐hydroxylated polypropylene was obtained in the presence of the chain‐transfer reagents because of the formation of dormant species after the insertion of the 3‐buten‐1‐ol‐based monomer followed by chain‐transfer reactions. The selectivity of the chain‐transfer reactions was influenced by the alkylaluminum protecting the comonomer and the catalyst structure. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5600–5607, 2004  相似文献   

13.
Commercial zeolite acid mordenite was thermally treated for use as a support for bis(n‐butyl‐cyclopentadienyl)zirconium dichloride [(n‐BuCp)2ZrCl2] for the further evaluation of ethylene/1‐hexene copolymerization. The polymerization time, temperature, and solvent, as well as the addition of tri(isobutyl)aluminum in the hexane medium, were evaluated. The catalytic activity and 1‐hexene content in the copolymer synthesized with the supported system were very near those obtained with the homogeneous precursor. A comonomer effect was observed for both systems. The polymerization rate profiles were obtained for ethylene polymerization, and the activation energy and monomer reactivity were calculated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3038–3048, 2004  相似文献   

14.
Ethene homopolymerization and copolymerization with 1‐hexene were performed with three new tetramethyldisilylene‐bridged zirconocene catalysts with 2‐indenyl ligand ( A ), 2‐tetrahydroindenyl ligand ( B ), and tetramethyl‐cyclopentadienyl ligand ( C ) and with methylaluminoxane as a cocatalyst. Catalysts A and B showed substantial comonomer incorporation, resulting in a copolymer melting temperature more than 20° lower than that of the corresponding homopolymer. In contrast, catalyst C produced a copolymer with a low 1‐hexene content and a high melting temperature. The reduction in the molecular weight with 1‐hexene addition also correlated well with the comonomer incorporation. For all three catalysts, the homopolymer and copolymer unsaturations indicated frequent chain termination after 1‐hexene insertion and a high degree of chain‐end isomerization during the homopolymerization of ethene. The chain transfer to Al in the cocatalyst also appeared to be important. The comonomer response could be correlated with the structural properties of the catalyst, as derived from quantum chemical calculations. A linear model, calibrated against recent experiments with unbridged (MenC5H5?n)2ZrCl2 catalysts, suggested that the low comonomer incorporation obtained with catalyst C was caused partly by a narrow opening angle between the aromatic ligands and partly by steric hindrance in the transition state of comonomer insertion. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1622–1631, 2003  相似文献   

15.
The catalyst DADNi(NCS)2 (DAD = (ArN?C(Me)? C(Me)?ArN); Ar = 2,6‐C6H3), activated by methylaluminoxane, was tested in ethylene polymerization at temperatures above 25 °C and variable Al/Ni ratio. The system was shown to be active even at 80 °C and when supported on silica. However, catalyst activity decreased. The catalyst system was also tested in ethylene and 10‐undecen‐1‐ol copolymerization at different ethylene pressures. The best activities were obtained at low polar monomer concentration (0.017 mol/L), using triisopropylaluminum (Al‐i‐Pr3) to protect the polar monomer. The incorporation of the comonomer increased with the increase of polar monomer concentration. According to 13C NMR analyses, all the resulting polyethylenes were highly branched and the polar monomer incorporation decreased as ethylene pressure increased. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5199–5208, 2007  相似文献   

16.
2‐Dicyclohexyl‐ and 2‐diphenylphosphinophenol, CCHH and PPHH , react with Ni(1,5‐COD)2 to form catalysts for polymerization of ethylene in or copolymerization with α‐olefins. The more P‐basic CCHH/Ni catalyst allows concentration‐dependent incorporation of olefins to give copolymers with isolated side groups and higher molecular weights, whereas the PPHH/Ni catalyst undergoes mainly stabilizing interactions with the olefins and leads to ethylene oligomers with no or marginal olefin incorporation. Pressure–time plots of the batch reactions show that the ethylene conversion is usually slower by catalysis with CCHH/Ni than by PPHH/Ni . The microstructure of the copolymers was determined by 13C NMR spectra, the number of side groups per main chain was estimated by 1H NMR analyses. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 258–266, 2009  相似文献   

17.
The objective of this work was to use both X‐ray and differential scanning calorimetry techniques in a comparative study of the lamellar and crystalline structures of heterogeneous and homogeneous ethylene‐α‐copolymers. The samples differed in the comonomer type (1‐butene, 1‐hexene, 1‐octene, and hexadecene), comonomer content, and catalyst used in the polymerizations. Step crystallizations were performed with differential scanning calorimetry, and the crystallinity and lamellar thicknesses of the different crystal populations were determined. Wide‐angle X‐ray scattering was used to determine crystallinities, average sizes of the crystallites, and dimensions of the orthorhombic unit cell. The average thickness, separation of the lamellae, and volume fractions of the crystalline phase were determined by small‐angle X‐ray scattering (SAXS). The results revealed that at densities below 900 kg/m3, polymers were organized as poorly organized crystal bundles. The lamellar distances were smaller and the lamellar thickness distributions were narrower for the homogeneous ethylene copolymers than for the heterogeneous ones. Step‐crystallization experiments by SAXS demonstrated that the long period increased after annealing. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1860–1875, 2001  相似文献   

18.
The controlled nitroxide‐mediated homopolymerization of 9‐(4‐vinylbenzyl)‐9H‐carbazole (VBK) and the copolymerization of methyl methacrylate (MMA) with varying amounts of VBK were accomplished by using 10 mol % {tert‐butyl[1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl]amino} nitroxide relative to 2‐({tert‐butyl[1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl]amino}oxy)‐2‐methylpropionic acid (BlocBuilder?) in dimethylformamide at temperatures from 80 to 125 °C. As little as 1 mol % of VBK in the feed was required to obtain a controlled copolymerization of an MMA/VBK mixture, resulting in a linear increase in molecular weight versus conversion with a narrow molecular weight distribution (Mw /Mn ≈ 1.3). Preferential incorporation of VBK into the copolymer was indicated by the MMA/VBK reactivity ratios determined: rVBK = 2.7 ± 1.5 and rMMA = 0.24 ± 0.14. The copolymers were found significantly “living” by performing subsequent chain extensions with a fresh batch of VBK and by 31P NMR spectroscopy analysis. VBK was found to be an effective controlling comonomer for NMP of MMA, and such low levels of VBK comonomer ensured transparency in the final copolymer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
This article discussed the root causes of the interesting differences between rac‐Et(Ind)2ZrCl2 and dimethyl (pyridyl‐amido)hafnium in catalyzing the propylene/ω‐halo‐α‐alkene copolymerization. Confirmed by density functional theory (DFT) calculations, the larger spacial opening around the active center of rac‐Et(Ind)2ZrCl2 contributes to the coordination and insertion of the monomers, resulting in the higher catalytic activity, while the narrow spacial opening around the Hf center retards the chain transfer reaction, leading to the much higher molecular weights (Mws) of the copolymers. The superior tolerability of Zr catalyst toward halogen groups might be attributed to that the dormant species generated from halogen coordination could be promptly reactivated. DFT calculations indicated the higher probability for the ω‐halo‐α‐alkene vinyl to coordinate with the Hf catalyst leading to the better ability to incorporate halogenated monomers. The high Mws and the outstanding isotacticity achieved by the Hf catalyst determined the higher melting temperature values of the copolymers with a certain amount of halogen groups. In addition, the chain transfer schemes were employed to analyze why the presence of halogenated monomers greatly decreased the Mws of the copolymers when rac‐Et(Ind)2ZrCl2 was used, while had no or little effect upon the Mws in the copolymerization by the Hf catalyst. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3421–3428  相似文献   

20.
Butadiene‐isoprene copolymerization with the system V(acac)3‐MAO was examined. Crystalline or amorphous copolymers were obtained depending on isoprene content. Both butadiene and isoprene units exhibit a trans‐1,4 structure and are statistically distributed along the polymer chain. Polymer microstructure, comonomer composition, and distribution along the polymer chain were determined by 13C and 1H NMR analysis. The thermal and X‐ray behaviors of the copolymers were also investigated and compared with results from solid‐state 13C NMR experiments. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4635–4646, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号