首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Diameter of a Scale-Free Random Graph   总被引:1,自引:0,他引:1  
We consider a random graph process in which vertices are added to the graph one at a time and joined to a fixed number m of earlier vertices, where each earlier vertex is chosen with probability proportional to its degree. This process was introduced by Barabási and Albert [3], as a simple model of the growth of real-world graphs such as the world-wide web. Computer experiments presented by Barabási, Albert and Jeong [1,5] and heuristic arguments given by Newman, Strogatz and Watts [23] suggest that after n steps the resulting graph should have diameter approximately logn. We show that while this holds for m=1, for m2 the diameter is asymptotically log n/log logn.* Research supported in part by NSF grant no. DSM9971788  相似文献   

2.
For a graph property P, the edit distance of a graph G from P, denoted EP(G), is the minimum number of edge modifications (additions or deletions) one needs to apply to G to turn it into a graph satisfying P. What is the furthest graph on n vertices from P and what is the largest possible edit distance from P? Denote this maximal distance by ed(n,P). This question is motivated by algorithmic edge‐modification problems, in which one wishes to find or approximate the value of EP(G) given an input graph G. A monotone graph property is closed under removal of edges and vertices. Trivially, for any monotone property, the largest edit distance is attained by a complete graph. We show that this is a simple instance of a much broader phenomenon. A hereditary graph property is closed under removal of vertices. We prove that for any hereditary graph property P, a random graph with an edge density that depends on P essentially achieves the maximal distance from P, that is: ed(n,P) = EP(G(n,p(P))) + o(n2) with high probability. The proofs combine several tools, including strengthened versions of the Szemerédi regularity lemma, properties of random graphs and probabilistic arguments. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2008  相似文献   

3.
Let γ(G) and i(G) be the domination number and independent domination number of a graph G, respectively. Sumner and Moore [8] define a graph G to be domination perfect if γ(H) = i(H), for every induced subgraph H of G. In this article, we give a finite forbidden induced subgraph characterization of domination perfect graphs. Bollobás and Cockayne [4] proved an inequality relating γ(G) and i(G) for the class of K1,k -free graphs. It is shown that the same inequality holds for a wider class of graphs.  相似文献   

4.
Given positive integers n and k, let gk(n) denote the maximum number of edges of a graph on n vertices that does not contain a cycle with k chords incident to a vertex on the cycle. Bollobás conjectured as an exercise in [2, p. 398, Problem 13] that there exists a function n(k) such that gk(n) = (k + 1)n ? (k + 1)2 for all nn(k). Using an old result of Bondy [ 3 ], we prove the conjecture, showing that n(k) ≤ 3 k + 3. © 2004 Wiley Periodicals, Inc. J Graph Theory 46: 180–182, 2004  相似文献   

5.
Recently, Bollobás, Janson and Riordan introduced a family of random graph models producing inhomogeneous graphs with n vertices and Θ(n) edges whose distribution is characterized by a kernel, i.e., a symmetric measurable function κ: [0, 1]2 → [0, ∞). To understand these models, we should like to know when different kernels κ give rise to “similar” graphs, and, given a real‐world network, how “similar” is it to a typical graph G(n, κ) derived from a given kernel κ. The analogous questions for dense graphs, with Θ(n2) edges, are answered by recent results of Borgs, Chayes, Lovász, Sós, Szegedy and Vesztergombi, who showed that several natural metrics on graphs are equivalent, and moreover that any sequence of graphs converges in each metric to a graphon, i.e., a kernel taking values in [0, 1]. Possible generalizations of these results to graphs with o(n2) but ω(n) edges are discussed in a companion article [Bollobás and Riordan, London Math Soc Lecture Note Series 365 (2009), 211–287]; here we focus only on graphs with Θ(n) edges, which turn out to be much harder to handle. Many new phenomena occur, and there are a host of plausible metrics to consider; many of these metrics suggest new random graph models and vice versa. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 39, 1‐38, 2011  相似文献   

6.
Consider the random graph model of Barabási and Albert, where we add a new vertex in every step and connect it to some old vertices with probabilities proportional to their degrees. If we connect it to only one of the old vertices the graph will be a tree. These graphs have been shown to have power law degree distributions, the same as observed in some large real‐world networks. We show that the degree distribution is the same on every sufficiently high level of the tree. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2006  相似文献   

7.
A random recursive tree on n vertices is either a single isolated vertex (for n=1) or is a vertex vn connected to a vertex chosen uniformly at random from a random recursive tree on n−1 vertices. Such trees have been studied before [R. Smythe, H. Mahmoud, A survey of recursive trees, Theory of Probability and Mathematical Statistics 51 (1996) 1-29] as models of boolean circuits. More recently, Barabási and Albert [A. Barabási, R. Albert, Emergence of scaling in random networks, Science 286 (1999) 509-512] have used modifications of such models to model for the web and other “power-law” networks.A minimum (cardinality) dominating set in a tree can be found in linear time using the algorithm of Cockayne et al. [E. Cockayne, S. Goodman, S. Hedetniemi, A linear algorithm for the domination number of a tree, Information Processing Letters 4 (1975) 41-44]. We prove that there exists a constant d?0.3745… such that the size of a minimum dominating set in a random recursive tree on n vertices is dn+o(n) with probability approaching one as n tends to infinity. The result is obtained by analysing the algorithm of Cockayne, Goodman and Hedetniemi.  相似文献   

8.
J. H. Kim  V. H. Vu 《Combinatorica》2006,26(6):683-708
Random regular graphs play a central role in combinatorics and theoretical computer science. In this paper, we analyze a simple algorithm introduced by Steger and Wormald [10] and prove that it produces an asymptotically uniform random regular graph in a polynomial time. Precisely, for fixed d and n with d = O(n1/3−ε), it is shown that the algorithm generates an asymptotically uniform random d-regular graph on n vertices in time O(nd2). This confirms a conjecture of Wormald. The key ingredient in the proof is a recently developed concentration inequality by the second author. The algorithm works for relatively large d in practical (quadratic) time and can be used to derive many properties of uniform random regular graphs. * Research supported in part by grant RB091G-VU from UCSD, by NSF grant DMS-0200357 and by an A. Sloan fellowship.  相似文献   

9.
A geodesic in a graph G is a shortest path between two vertices of G. For a specific function e(n) of n, we define an almost geodesic cycle C in G to be a cycle in which for every two vertices u and v in C, the distance dG(u, v) is at least dC(u, v)?e(n). Let ω(n) be any function tending to infinity with n. We consider a random d‐regular graph on n vertices. We show that almost all pairs of vertices belong to an almost geodesic cycle C with e(n) = logd?1logd?1n+ ω(n) and |C| = 2logd?1n+ O(ω(n)). Along the way, we obtain results on near‐geodesic paths. We also give the limiting distribution of the number of geodesics between two random vertices in this random graph. Copyright © 2010 John Wiley & Sons, Ltd. J Graph Theory 66:115‐136, 2011  相似文献   

10.
Let fd (G) denote the minimum number of edges that have to be added to a graph G to transform it into a graph of diameter at most d. We prove that for any graph G with maximum degree D and n > n0 (D) vertices, f2(G) = nD − 1 and f3(G) ≥ nO(D3). For d ≥ 4, fd (G) depends strongly on the actual structure of G, not only on the maximum degree of G. We prove that the maximum of fd (G) over all connected graphs on n vertices is n/⌊d/2 ⌋ − O(1). As a byproduct, we show that for the n‐cycle Cn, fd (Cn) = n/(2⌊d/2 ⌋ − 1) − O(1) for every d and n, improving earlier estimates of Chung and Garey in certain ranges. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 161–172, 2000  相似文献   

11.
Let G be a graph of order n and k ≥ 0 an integer. It is conjectured in [8] that if for any two vertices u and v of a 2(k + 1)‐connected graph G,d G (u,v) = 2 implies that max{d(u;G), d(v;G)} ≥ (n/2) + 2k, then G has k + 1 edge disjoint Hamilton cycles. This conjecture is true for k = 0, 1 (see cf. [3] and [8]). It will be proved in this paper that the conjecture is true for every integer k ≥ 0. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 8–20, 2000  相似文献   

12.
If x is a vertex of a digraph D, then we denote by d +(x) and d (x) the outdegree and the indegree of x, respectively. A digraph D is called regular, if there is a number p ∈ ℕ such that d +(x) = d (x) = p for all vertices x of D. A c-partite tournament is an orientation of a complete c-partite graph. There are many results about directed cycles of a given length or of directed cycles with vertices from a given number of partite sets. The idea is now to combine the two properties. In this article, we examine in particular, whether c-partite tournaments with r vertices in each partite set contain a cycle with exactly r − 1 vertices of every partite set. In 1982, Beineke and Little [2] solved this problem for the regular case if c = 2. If c ⩾ 3, then we will show that a regular c-partite tournament with r ⩾ 2 vertices in each partite set contains a cycle with exactly r − 1 vertices from each partite set, with the exception of the case that c = 4 and r = 2.  相似文献   

13.
In this paper we survey results of the following type (known as closure results). Let P be a graph property, and let C(u,v) be a condition on two nonadjacent vertices u and v of a graph G. Then G+uv has property P if and only if G has property P. The first and now well-known result of this type was established by Bondy and Chvátal in a paper published in 1976: If u and v are two nonadjacent vertices with degree sum n in a graph G on n vertices, then G+uv is hamiltonian if and only if G is hamiltonian. Based on this result, they defined the n-closure cln (G) of a graph G on n vertices as the graph obtained from G by recursively joining pairs of nonadjacent vertices with degree sum n until no such pair remains. They showed that cln(G) is well-defined, and that G is hamiltonian if and only if cln(G) is hamiltonian. Moreover, they showed that cln(G) can be obtained by a polynomial algorithm, and that a Hamilton cycle in cln(G) can be transformed into a Hamilton cycle of G by a polynomial algorithm. As a consequence, for any graph G with cln(G)=K n (and n≥3), a Hamilton cycle can be found in polynomial time, whereas this problem is NP-hard for general graphs. All classic sufficient degree conditions for hamiltonicity imply a complete n-closure, so the closure result yields a common generalization as well as an easy proof for these conditions. In their first paper on closures, Bondy and Chvátal gave similar closure results based on degree sum conditions for nonadjacent vertices for other graph properties. Inspired by their first results, many authors developed other closure concepts for a variety of graph properties, or used closure techniques as a tool for obtaining deeper sufficiency results with respect to these properties. Our aim is to survey this progress on closures made in the past (more than) twenty years. Revised: September 27, 1999  相似文献   

14.
Here it is proved that for almost all simple graphs over n vertices one needs Ω(n4/3(log n)?4/3) extra vertices to obtain them as a double competition graph of a digraph. on the other hand O(n5/3) extra vertices are always sufficient. Several problems remain open.  相似文献   

15.
 Let ω(G) be the clique number of a graph G. We prove that if G runs over the set of graphs with a fixed degree sequence d, then the values ω(G) completely cover a line segment [a,b] of positive integers. For an arbitrary graphic degree sequence d, we define min(ω,d) and max(ω,d) as follows:
where is the graph of realizations of d. Thus the two invariants a:=min(ω,d) and b:=max(ω,d) naturally arise. For a graphic degree sequence d=r n :=(r,r,…,r) where r is the vertex degree and n is the number of vertices, the exact values of a and b are found in all situations. Since the independence number, α(G)=ω(Gˉ), we obtain parallel results for the independence number of graphs. Received: October, 2001 Final version received: July 25, 2002 RID="*" ID="*" Work supported by The Thailand Research Fund, under the grant number BRG/09/2545  相似文献   

16.
A set S of vertices in a graph G is a packing if the vertices in S are pairwise at distance at least 3 apart in G. The packing number of G, denoted by ρ(G), is the maximum cardinality of a packing in G. Favaron [Discrete Math. 158 (1996), 287–293] showed that if G is a connected cubic graph of order n different from the Petersen graph, then ρ(G) ≥ n/8. In this paper, we generalize Favaron’s result. We show that for k ≥ 3, if G is a connected k-regular graph of order n that is not a diameter-2 Moore graph, then ρ(G) ≥ n/(k2 ? 1).  相似文献   

17.
In this paper, the exact solution of average path length in Barabási–Albert model is given. The average path length is an important property of networks and attracts much attention in many areas. The Barabási–Albert model, also called scale free model, is a popular model used in modeling real systems. Hence it is valuable for us to examine the average path length of scale free model. There are two answers, regarding the exact solution for the average path length of scale free networks, already provided by Newman and Bollobas respectively. As Newman proposed, the average path length grows as log(n) with the network size n. However, Bollobas suggested that while it was true when m = 1, the answer changed to log(n)/log(log(n)) when m > 1. In this paper, as we propose, the exact solution of average path length of BA model should approach log(n)/log(log(n)) regardless the value of m. Finally, the simulation is presented to show the validity of our result.  相似文献   

18.
Let a random directed acyclic graph be defined as being obtained from the random graph Gn, p by orienting the edges according to the ordering of vertices. Let γn* be the size of the largest (reflexive, transitive) closure of a vertex. For p=c(log n)/n, we prove that, with high probability, γn* is asymptotic to nc log n, 2n(log log n)/log n, and n(1−1/c) depending on whether c<1, c=1, or c>1. We also determine the limiting distribution of the first vertex closure in all three ranges of c. As an application, we show that the expected number of comparable pairs is asymptotic to n1+c/c log n, ½(n(log log n)/log n)2, and ½(n(1−1/c))2, respectively. © 2001 John Wiley & Sons, Inc. Random Struct. Alg., 18: 164–184, 2001  相似文献   

19.
A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number γt(G) of G. It is known [J Graph Theory 35 (2000), 21–45] that if G is a connected graph of order n > 10 with minimum degree at least 2, then γt(G) ≤ 4n/7 and the (infinite family of) graphs of large order that achieve equality in this bound are characterized. In this article, we improve this upper bound of 4n/7 for 2‐connected graphs, as well as for connected graphs with no induced 6‐cycle. We prove that if G is a 2‐connected graph of order n > 18, then γt(G) ≤ 6n/11. Our proof is an interplay between graph theory and transversals in hypergraphs. We also prove that if G is a connected graph of order n > 18 with minimum degree at least 2 and no induced 6‐cycle, then γt(G) ≤ 6n/11. Both bounds are shown to be sharp. © 2008 Wiley Periodicals, Inc. J Graph Theory 60: 55–79, 2009  相似文献   

20.
We consider a variation of a classical Turán-type extremal problem as follows: Determine the smallest even integer σ(Kr,r,n) such that every n-term graphic sequence π = (d1,d2,...,dn) with term sum σ(π) = d1 + d2 + ... + dn ≥ σ(Kr,r,n) is potentially Kr,r-graphic, where Kr,r is an r × r complete bipartite graph, i.e. π has a realization G containing Kr,r as its subgraph. In this paper, the values σ(Kr,r,n) for even r and n ≥ 4r2 - r - 6 and for odd r and n ≥ 4r2 + 3r - 8 are determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号