首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cationic latex particles with surface amino groups were prepared by a multistep batch emulsion polymerization. In the first one, two or three steps, monodisperse cationic latex particles to be used as the seed were synthesized. In the third and fourth steps, the amino‐functionalized monomer aminoethylmethacrylate hydrochloride was used to synthesize the final functionalized latex particles. Three different azo initiators 2,2′‐azobisisobutyramidine dihydrochloride, 2,2′‐azobisdimethylenisobutyramidine dihydrochloride, and 2,2′‐azobisisobutyronitrile were used as initiators. Hexadecyltrimethylammonium bromide was the emulsifier. To characterize the final latices, conversions were obtained gravimetrically, and particle size distributions and average particle diameters were determined by transmission electron microscopy and photon correlation spectroscopy. The amount of amino groups was determined by conductimetric titrations. Colloidal aspects were ascertained by measuring the electrophoretic mobilities. Activation of these particles with glutaraldehyde produced an efficient reagent for latex‐enhanced immunoassay. The covalent coupling efficiency (protein covalently bound with respect to the total amount of protein adsorbed) was compressed between 50 and 80%. The developed immunoreagent was applied to the measurement of serum ferritin concentration in a new turbidimetric procedure that was compared with a commercial nephelometric method; the results obtained with both methods demonstrated that the two procedures correlated well (r = 0.992). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2404–2411, 2003  相似文献   

2.
Surfactant-free seeded (core-shell) polymerization of cationic polymer colloids is presented. Polystyrene core particles with sizes between 200 nm and 500 nm were synthesized. The number average diameter of the colloidal core particles increased with increasing monomer concentration. Cationic shells were introduced by co-polymerizing styrene with the cationic monomers (vinylbenzyl)trimethylammonium chloride (VBTMAC), [(2-methacryloyloxy)ethyl] trimethylammonium chloride (METMAC) and [(2-(acryloyloxy)ethyl] trimethylammonium chloride (AETMAC) onto the polystyrene cores. The cationic monomer AETMAC, undocumented to our knowledge in colloid synthesis, produced the best cationic shells and could be incorporated at much higher concentrations in the shell compared to the commonly used VBTMAC and METMAC, which yielded undesired polyelectrolyte side products already at relatively low cationic monomer concentrations. In shell formation, feed concentrations of AETMAC between 1.3 mol% (2.4 wt%) and 10.7 mol% (20 wt%) in styrene could be employed, allowing us to control colloid surface charge density over a wide range. The influence of various polymerization parameters (initiator concentration, cross-linking agent, and ionic strength) on the co-polymerization process with AETMAC is discussed. Core-shell particles were characterized using HR-SEM, potentiometric titration and zeta potential measurements.  相似文献   

3.
The noncommercial functional monomer 4‐vinylbenzyl hydrazine (VBH) was synthesized and subsequently copolymerized with styrene (St) by means of different batch and semicontinuous seeded emulsion polymerization processes, so as to obtain hydrazine‐functionalized nanoparticles. The effect of pH, surfactant and initiator amounts, ratio VBH/St, reaction temperature, and ratio acetone/water were studied. Due to the amphiphilic character of VBH at acid pH, the hydrazine groups of the functionalized comonomer were masked with acetone to form hydrazone groups. Secondary nucleations were avoided by using the protected VBH comonomer; however, a decreased radical efficiency achieving limited conversion was observed. Controlling the cationic initiator concentration, complete conversions together with the neat growth of the seed particles were obtained in the semicontinuous seeded emulsion polymerization of styrene and VBH protected with acetone. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6201–6213, 2009  相似文献   

4.
The synthesis of new polymer colloids based on renewable resources, such as sugar‐derived monomers, is nowadays a matter of interest. These new polymeric particles should be useful in biomedical applications, such as drug delivery, because of their assumed biodegradability. In this work, two new families of polymer latex particles, based on a sugar‐derived monomer, 3‐O‐methacryloyl‐1,2:5,6‐di‐O‐isopropylidene‐α‐D ‐glucofuranose (3‐MDG), were produced and characterized. The syntheses of poly(3‐MDG) crosslinked particles and those obtained by copolymerization with methacrylic acid (MAA), poly(3‐MDG‐co‐MAA) crosslinked particles, were prepared by surfactant‐free emulsion polymerization in a batch reactor. The average particle diameter evolutions, the effect of pH of the dispersion medium on the final average diameters, together with the microscopic and morphological analysis of the particle's surface and inner dominium, were analyzed. Poly(3‐MDG‐co‐EGDMA) stable particles were obtained by adding low amounts of initiator. The surface‐charge density of these particles corresponded to the sulfate groups coming from the initiator. In the second family of latices, poly(3‐MDG‐co‐MAA‐co‐EGDMA) particles, DCP measurements and SEM and TEM observations showed that the sizes and surface characteristics depended on the amounts of MAA and crosslinker used in the reaction mixture. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 443–457, 2006  相似文献   

5.
In this research, submicron and carboxyl‐functionalized magnetic latex particles were elaborated by using seeded emulsion polymerization technique in presence of oil‐in‐water (o/w) magnetic emulsion as seed. The polymerization conditions were optimized in order to get well‐defined latex particles with magnetic core and polymer shell bearing carboxylic (–COOH) functionality. Starting from (o/w) magnetic emulsion as seed, synthesis process was performed by copolymerization of styrene (St) monomer with the cross‐linker divinylbenzene (DVB) in presence of 4,4′‐azobis(4‐cyanopentanoic acid) (ACPA) as a carboxyl‐bearing initiator. The prepared magnetic latex particles were first characterized in terms of particle size, chemical composition, morphology, magnetic properties, magnetic content, and colloidal stability using various techniques, e.g. particle size analyzer using dynamic light scattering (DLS) technique, Fourier transform infrared, transmission electron microscopy, vibrating sample magnetometer, thermogravimetric analysis, and zeta potential measurements as a function of pH of the dispersion media, respectively. The prepared magnetic latex particles were then used as second seed for further functionalization with methacrylic acid (MAA) in order to enhance carboxylic groups on the magnetic particle's surface. The results showed that final magnetic latex particles possessed spherical morphology with core‐shell structure and enriched carboxylic acid functionality. More importantly, they exhibited superparamagnetism with high magnetic content (58.42 wt%) and high colloidal stability, which considered as the main requirements for their application in the biomedical diagnostic domains. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
A synthetic route towards surface modified, monodisperse, spherical particles is presented. The precursor particles exhibit epoxy‐functionalities which can be opened afterwards with an appropriate nucleophile. Via this route, dye labeled particles are obtained. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
Epoxy‐functionalized polystyrene/silica core–shell composite nanoparticles were prepared by the postaddition of glycidyl methacrylate (GMA) via emulsion polymerization. The outermost shell of obtained multilayered core–shell particles was made up of poly(glycidyl methacrylate) (PGMA). A semicontinuous process involving the dropwise addition of GMA was used to avoid demulsification of the emulsion system. The amount of grafted PGMA was quantified by Fourier transform infrared spectroscopy and was altered in a wide range (1–50 wt % to styrene). The binding efficiency was usually high (ca. 90%), indicating strong adhesion between the silica core and the polymer shell. There were approximately four or five original silica beads, which formed a cluster, per composite of nanoparticles whose size was about 60–70 nm. Other main factors of polymerization conditions including the amounts of sodium dodecyl sulfonate and silica are also discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2253–2262, 2004  相似文献   

8.
Monodisperse latex particles with surface amino groups were prepared by a two‐step emulsion polymerization. In the first step, the seeds were synthesized by batch emulsion polymerization of styrene; and in the second step, two different amino‐functionalized monomers [aminoethylmethacrylate hydrochloride (AEMH) and vinylbenzylamine hydrochloride (VBAH)], two different initiator systems (K2S2O8 and K2S2O8/Na2S2O5) and mixtures of emulsifiers sodium dodecylsulfate (SDS) and Tween 21 were used to synthesize the final latexes. To characterize the final latexes, conversions were obtained gravimetrically and particle size distributions and average particle diameters were determined by transmission electron microscopy (TEM) and photon correlation spectroscopy (PCS). The amount of amino groups was determined by the SPDP (N‐succinimidyl 3‐(2‐pyridyldithio)propionate) method. The influence of the different conditions used to synthesize the latexes on the colloidal stability of the particles was evaluated by measuring the diameters of the final latexes dispersed in solutions at different pHs and ionic strengths. The most stable latexes were obtained using the smallest seed, VBAH monomer, and the K2S2O8/Na2S2O5 initiator system. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4230–4237, 2000  相似文献   

9.
In this work, poly(N‐isopropylacrylamide‐co‐acrylic acid) (poly(NIPAAm‐AA)) copolymer latex particles (microgels) were synthesized by the method of soapless emulsion polymerization. Poly(NIPAAm‐AA) copolymer microgels have the property of being thermosensitive. The concentration of acrylic acid (AA) and crosslinking agent N,N′‐methylenebisacrylamide were important factors to influence the lower critical solution temperature (LCST) of poly(NIPAAm‐AA) microgels. The effects of AA and crosslinking agent on the swelling behavior of poly(NIPAAm‐AA) microgels were also studied. The poly(NIPAAm‐AA) copolymer microgels were then used as a thermosensitive drug carrier to load caffeine. The effects of concentration of AA and crosslinking agent on the control release of caffeine were investigated. How the AA content and crosslinking agent influenced the morphology and LCST of the microgels was discussed in detail. The relationship of morphology, swelling, and control release behavior of these thermosensitive microgels was established. A new scheme was proposed to interpret the control release of the microgels with different morphological structures. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5734–5741, 2008  相似文献   

10.
11.
We describe the synthesis of several different polycarbonate particles by miniemulsion polymerization. The monomers were allylmethyl carbonate (AlMeC), di(ethylene glycol) bisallylcarbonate (DBAC), and 4‐vinyl‐1,3‐dioxan‐2‐one [vinyl ethylene carbonate (VEC)]. For these polymerizations, higher monomer conversions were obtained with oil‐soluble initiators (azobisisobutyronitrile and benzoyl peroxide) than with a water‐soluble initiator (potassium persulfate). Benzoyl peroxide was particularly effective in yielding particles with a narrow size distribution. Although increasing amounts of a surfactant (sodium dodecyl sulfate) led to smaller particles, the choice of the monomer was the major determinant. For example, in polymerization reactions carried out at 85 °C with benzoyl peroxide as the initiator and with otherwise identical recipes, we obtained particle sizes of 181 nm with AlMeC, 296 nm with VEC, and 203 nm with DBAC. Fluorescent particles were synthesized with comonomers based on the benzothioxanthene nucleus. Because the dyes had poor solubility in the monomers, it was necessary to include typically 20 wt % bromobenzene or dichlorobenzene based on the monomer in the miniemulsion reaction mixture. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1999–2009, 2004  相似文献   

12.
Functionalized polystyrene latex particles were obtained either by seed particle functionalization or by the shot-growth procedure using 2,2′-azobis (2-amidino-propane) dihydrochloride as an initiator and vinylbenzylamine hydrochloride as a cationic monomer. The capabilities of both processes to produce functionalized particles in terms of functionalization yields coming from surface amino group titrations were compared. Different titration methods were performed and a new technique was introduced using fluorescamine.  相似文献   

13.
We developed a novel fluorescence labeling technique for quantification of surface densities of atom transfer radical polymerization (ATRP) initiators on polymer particles. The cationic P(St‐CPEM‐C4DMAEMA) and anionic P(St‐CPEM) polymer latex particles carrying ATRP‐initiating chlorine groups were prepared by emulsifier‐free emulsion polymerization of styrene (St), 2‐(2‐chloropropionyloxy)ethyl methacrylate (CPEM), and N‐n‐butyl‐N,N‐dimethyl‐N‐(2‐methacryloyloxy)ethylammonium bromide (C4DMAEMA). ATRP initiators on the surface of polymer particles were converted into azide groups by sodium azide, followed by fluorescent labeling with 5‐(N,N‐dimethylamino)‐N′‐(prop‐2‐yn‐1‐yl)naphthalene‐1‐sulfonamide (Dansyl‐alkyne) by copper‐catalyzed azide‐alkyne cycloaddition (CuAAC). The reaction time required for both azidation of ATRP‐initiating groups and successive fluorescence labeling of azide groups with Dansyl‐alkyne by CuAAC were investigated in detail by FTIR and fluorescence spectral measurement, respectively. The ATRP initiator densities on the cationic P(St‐CPEM‐C4DMAEMA) and anionic P(St‐CPEM) particle surfaces were estimated to be 0.21 and 0.15 molecules nm?2, respectively, which gave close agreement with values previously determined by a conductometric titration method. The fluorescence labeling through click chemistry proposed herein is a versatile technique to quantify the surface ATRP initiator density both on anionic and cationic polymer particles. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4042–4051  相似文献   

14.
15.
New polymer latexes bearing saccharide moieties on the particle surface were synthesized by using a water‐soluble sugar monomer, such as 1‐deoxy‐1‐methacryl‐amido‐D ‐glucitol, (MAG). All the latexes were prepared by a two‐stage emulsion polymerization technique. In the first step, the core was prepared with butyl acrylate (BA) and styrene (St). In the second step, the seed latex was polymerized with ethyl acrylate (EA) and MAG. The influence of a bifunctional monomer such as allyl methacrylate (ALMA), introduced at various concentrations, on the final latexes morphologies and properties was investigated. It was found that the latex particles exhibit a core‐shell structure. The mass balance of MAG showed that the main part of the sugar moiety is on the shell layer. The molecular properties, such as structure, composition, and molecular weight, were determined by elemental analysis, 1H‐ and 13CNMR spectroscopy. Colloidal (particle size and their distributions), thermal, and rheological properties were also studied. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
In this study, the poly(NIPAAm–MAA)/Fe3O4 hollow latex particles were synthesized by three steps. The first step was to synthesize the poly(methyl methacrylate‐co‐methylacrylate acid) (poly(MMA‐MAA)) copolymer latex particles by the method of soapless emulsion polymerization. Following the first step, the second step was to polymerize N‐isopropylacrylamide (NIPAAm), MAA, and crosslinking agent (N,N'‐methylene‐bisacrylamide (MBA)) in the presence of poly(MMA‐MAA) latex particles to form the linear poly(MMA‐MAA)/crosslinking poly (NIPAAm‐MAA) core‐shell latex particles. After the previous processes, the core‐shell latex particles were heated in the presence of NH4OH to dissolve the linear poly(MMA‐MAA) core in order to form the poly(NIPAAm‐MAA) hollow latex particles. In the third step, Fe2+ and Fe3+ ions were introduced to bond with the ? COOH groups of MAA segments in the poly(NIPAAm‐MAA) hollow polymer latex particles. Further by a reaction with NH4OH and then Fe3O4 nanoparticles were generated in situ and the poly(NIPAAm‐MAA)/Fe3O4 magnetic composite hollow latex particles were formed. The concentrations of MAA, crosslinking agent (N,N'‐methylene bisacrylamide), and Fe3O4 nanoparticles were important factors to influence the morphology of hollow latex particles and lower critical solution temperature of poly(NIPAAm–MAA)/Fe3O4 magnetic composite hollow latex particles. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
We describe the synthesis and characterization of three new polymerizable benzophenone derivatives [2‐acryloxy‐5‐methyl benzophenone ( 8 ), 4′‐dimethylamino‐2‐acryloxy‐5‐methyl benzophenone ( 9 ), and 4′‐dimethylamino‐2‐(β‐acryloxyethyl)oxy‐5‐methyl benzophenone ( 10 )]. We show that these monomers can successfully be incorporated into vinyl acetate (VAc) copolymer latex particles. These particles were prepared by semicontinuous emulsion polymerization and mini‐emulsion polymerization of VAc with butylacrylate (BA) for VAc/BA = 4/1 by weight. The two monomers 9 and 10 bearing the 4′‐dimethylamino group satisfy the important spectroscopic criteria required of a dye to serve as an acceptor chromophore for nonradiative energy transfer from phenanthrene (Phe) as the donor. Their UV absorption spectra suggest significant overlap with the emission spectrum of Phe, which can be incorporated into P(VAc‐co‐BA) latex through copolymerization with 9‐acryloxymethyl Phe ( 2 ). In addition, these chromophores provide a window in their absorption spectra for excitation of the Phe chromophore at 300 nm. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3001–3011, 2002  相似文献   

18.
In this work, the poly(methacrylic acid‐coN‐isopropylacrylamide) thermosensitive composite hollow latex particles was synthesized by a three‐step reaction. The first step was to synthesize the poly(methyl methacrylate‐co‐methacrylic acid) (poly(MMA‐MAA)) copolymer latex particles by the method of soapless emulsion polymerization. The second step was to polymerize methacrylic acid (MAA), N‐isopropylacrylamide (NIPAAm), and N,N′‐methylenebisacrylamide in the presence of poly(MMA‐MAA) latex particles to form the linear poly(methyl methacrylate‐co‐methacrylic acid)/crosslinking poly(methacrylic acid‐coN‐isopropylacrylamide) (poly(MMA‐MAA)/poly(MAA‐NIPAAm)) core–shell latex particles. In the third step, the core–shell latex particles were heated in the presence of ammonia solution to form the crosslinking poly(MAA‐NIPAAm) thermosensitive hollow latex particles. The morphologies of poly(MMA‐MAA)/poly(MAA‐NIPAAm) core–shell latex particles and poly(MAA‐NIPAAm) hollow latex particles were observed. The influences of crosslinking agent and shell composition on the lower critical solution temperature of poly(MMA‐MAA)/poly(MAA‐NIPAAm) core–shell latex particles and poly(MAA‐NIPAAm) hollow latex particles were, respectively, studied. Besides, the poly(MAA‐NIPAAm) thermosensitive hollow latex particles were used as carriers to load with the model drug, caffeine. The effect of various variables on the amount of caffeine loading and the efficiency of caffeine release was investigated. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5203–5214  相似文献   

19.
A method is presented for synthesizing surfactant‐free latexes comprising a starch‐graft‐vinyl polymer, (1) starting with a suspension of the highly branched starch amylopectin, either native or degraded, (2) then using ozonolysis to create free‐radical initiation sites on this amylopectin scaffold, and (3) finally adding the monomer and inducing polymerization. The ozone simultaneously thins the starch and creates initiating/grafting sites on the starch, from which starch‐graft‐copolymer latexes can be grown. The encapsulation of starch inside the hydrophobic polymer particles created by a heterogeneous free‐radical polymerization process is demonstrated with energy‐dispersive spectroscopy; this is the first time that the particle morphology of such a latex has been so characterized. The data unambiguously prove that low‐molar‐mass degraded starch can be encapsulated within a latex particle. The underlying mechanisms have been explored, and data quantifying the rates of production of hydroperoxides by ozone, the thermal decomposition of the starch hydroperoxides so formed, and the degradation of amylopectin by ozone are reported. The activation energy for the thermal decomposition of the starch macroinitiator, determined in this work to be 125 ± 8 kJ mol−1, is consistent with the proposition that the initiating species are mainly hydroperoxides. Colloidally stable poly(styrene‐con‐butyl acrylate) latexes based on high‐molar‐mass amylopectin have been developed. These are stable against electrolytes (several months in 4 mol L−1 NaCl), with 20% of the starch effectively grafted to the particles. Films cast from such latexes are more pliable than starch films and are readily redispersed in water. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5832–5845, 2006  相似文献   

20.
A novel visible light responsive random copolymer consisting of hydrophobic azobenzene‐containing acrylate units and hydrophilic acrylic acid units has been prepared. The azobenzene molecule bearing methoxy groups at all four ortho positions is readily synthesized by one‐step conversion of diazotization. The as‐prepared polymer can self‐assemble into nanoparticles in water due to its amphiphilic nature. The tetra‐o‐methoxy‐substituted azobenzene‐functionalized polymer can exhibit the trans‐to‐cis photoswitching under the irradiation with green light of 520 nm and the cis‐to‐trans photoswitching under the irradiation with blue light of 420 nm in both solution and aggregate state. The morphologies of the self‐assembled nanoparticles are revealed by TEM and DLS. The controlled release of loaded molecules from the nanoparticles can be realized by adjusting pH value since the copolymer possesses pH responsive acrylic acid groups. The fluorescence of loaded Nile Red in the nanoparticles can be tuned upon the visible light irradiation. The reversible photoswitching of the azobenzene‐functionalized polymer under visible light may endow the polymer with wide applications without using ultraviolet light at all. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2768–2775  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号