首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polysulfones (PSfs) containing pendant aldehyde groups have potential uses as reactive polymer supports or affinity membranes to bind enzymes and ligands. The polymeric aldehydes may also be utilized to prepare crosslinked membranes and to covalently bond inorganic species to the matrix. A series of polymers containing pendant aldehydes with degrees of substitution (DS) ranging from 0.1 to 2.0 groups per repeat unit was prepared by lithiation at the orthosulfone site and then treatment of the intermediate with dimethylformamide (DMF), a formyl equivalent electrophile. A polymer with aldehyde groups (DS 2) at the orthoether site was also prepared by lithiation of brominated PSf followed by DMF. The new polymer structures were characterized in detail by NMR spectroscopy, and their thermal properties were investigated by DSC and thermogravimetric analysis. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 675–682, 2001  相似文献   

2.
Anion‐exchange membranes containing pendant benzimidazolium groups were synthesized from polysulfone by chrolomethylation followed by nucleophilic substitution reaction with 1‐methylbenzimidazole. The structures of the polymers were characterized by 1H‐NMR and FTIR analysis. The resulting membranes showed high thermal stability below 200 °C. The values of water uptake and swelling degree increased with the ion‐exchange capacity of the polymeric membrane. The ionic conductivity was measured by means of impedance spectroscopy in aqueous solution of potassium hydroxide (10?4?10?1 M). The results show not only a clear correlation between the membrane's electrochemical behavior with the electrolyte solution embedded in the membrane, but also with the degree of the polysulfone's chloromethylation.Thus, the ionic conductivity increased more than two orders of magnitude when the degree of chloromethylation increased from 40 to 140%. Benzimidazolium‐functionalized polysulfones exhibited better thermal, mechanical, and electrochemical properties than the widely used polymeric membranes containing quaternary ammonium groups. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2363–2373  相似文献   

3.
The commercial polyimide Matrimid was modified by bromination for the purpose of improving its membrane‐transport properties as a gas‐separation material and providing functional group reactivity for further modifications. The unmodified and brominated polymers were characterized by elemental analysis and one‐dimensional and two‐dimensional NMR, which revealed that one bromine atom per repeat unit was incorporated regioselectively onto the indane aromatic ring. The thermal and physical properties of the polymers before and after bromination were also investigated. The gas‐transport properties of the unmodified and brominated polymers were compared. © 2002 Government of Canada. Exclusive worldwide publication rights in the article have been transferred to Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4193–4204, 2002  相似文献   

4.
Polysulfone copolymers based on mixtures of bisphenol A, BPA, and 1,1 bi‐2 naphthol, BN, diols have been synthesized and their gas permeability coefficients and selectivity separation factors for O2/N2 and CO2/CH4, at 5 atm and 35 °C, have been measured in a standard permeation cell. The polysulfone copolymers can form flexible thin films suitable for gas separation membranes. The gas selectivity for O2/N2 measured for the polysulfone copolymers synthesized with 50 and 70 mol % of BN, with the rest being BPA, in the initial mixture of diols are 6.4 and 6.8, respectively. The corresponding gas permeability coefficients for O2 are 1.24 and 1.09 Barrers. Compared to the corresponding selectivity and permeability balance reported for polysulfones based on pure BPA, BPA–PSF, the copolymers show a balance that moves in the direction of higher selectivity with small losses in the permeability of the fastest gas. From the glass transition temperature determinations, it is observed that the incorporation of BN in the repeating unit of BPA–PSF inhibits large‐scale segmental motions that are reflected in reductions in the diffusivity coefficients for all gases. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 226–231, 2004  相似文献   

5.
The gas‐transport properties of one of a family of well‐known adhesives, Loctite 350®, were studied. Permeability, solubility, and diffusivity coefficients, together with the activation energies of diffusion and permeation and the solution enthalpy, were determined from 20 to 40 °C for oxygen, nitrogen, carbon dioxide, and methane. Loctite 350® showed relatively high permselectivity and permeability for the gas pairs O2/N2 and CO2/CH4, especially for the former. The possibility of preparing very thin layers on various kinds of supports from these photocurable polymers makes them promising materials for gas‐separation devices. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 786–795, 2001  相似文献   

6.
Poly(ethylene oxide)‐segmented polyurethanes (PEO‐PUs) and polyamides (PEO‐PAs) were prepared, and their morphology and CO2/N2 separation properties were investigated in comparison with those of PEO‐segmented polyimides (PEO‐PIs). The contents of the hard and soft segments in the soft and hard domains, WHS and WSH, respectively, were estimated from glass‐transition temperatures with the Fox equation. The phase separation of the PEO domains depended on the kind of hard‐segment polymer; that is, WHS was in the order PU > PA ≫ PI for a PEO block length (n) of 45–52. The larger WHS of PUs and PAs was due to hydrogen bonding between the oxygen of PEO and the NH group of urethane or amide. The CO2/N2 separation properties depended on the kind of hard‐segment polymer. Compared with PEO‐PIs, PEO‐PUs and PEO‐PA had much smaller CO2 permeabilities because of much smaller CO2 diffusion coefficients and somewhat smaller CO2 solubilities. PEO‐PUs also had a somewhat smaller permselectivity because of a smaller solubility selectivity. This was due to the larger WHS of PEO‐PUs and PEO‐PAs, that is, a greater contamination of PEO domains with hard urethane and amide units. For PEO‐PIs, with a decrease in n to 23 and 9, WHS became large and CO2 permeability decreased significantly, but the permselectivity was still at a high level of more than 50 at 35 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1707–1715, 2000  相似文献   

7.
A modified polysulfone containing benzylamine groups was synthesized as a reactive membrane material. Polysulfone was activated at the ortho‐sulfone site by direct lithiation with n‐butyllithium, and the resulting lithiated polysulfone was then reacted with benzonitrile; this yielded a polymer with pendant benzimine groups. The structure was confirmed by NMR and IR spectroscopy and by the transformation of imine to ketone by acid hydrolysis. The polymeric benzimine was also reduced to benzylamine with sodium cyanoborohydride in an acidic medium. The structure and degree of substitution of both benzylamine derivatives were determined by NMR and IR spectroscopy. The modified polysulfone containing benzylamine groups initiated the polymerization of N‐carboxyanhydride of γ‐benzyl‐L ‐glutamate [Glu(OBzl)–NCA]. The side‐chain oligopeptide of Glu(OBzl)–NCA attached to polysulfone was converted into molecular recognition sites. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1316–1329, 2003  相似文献   

8.
4‐Fluorophenylsulfonylphenyl‐terminated polysulfone and 4‐fluorobenzoylphenyl ketone were prepared with bisphenol A and an excess of bis‐(4‐fluorophenyl)sulfone or 4,4′‐difluorobenzophenone, respectively, at 160 °C using potassium carbonate in N,N‐dimethylacetamide. The resulting polymers were reacted with 4‐hydroxystyrene to synthesize vinyl‐terminated polysulfones and ketones. The silicon‐containing polysulfones and ketones were prepared from the vinyl‐terminated polymer precursor and various H‐functional silanes or siloxanes. The synthesis of silicon‐containing polymers was achieved by hydrosilation with a rhodium catalyst. It was shown that the hydrosilation reaction proceeds with 55:45 chemoselectivity. The resulting polymers were investigated by 1H NMR spectroscopy, DSC, and thermogravimetric analysis. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2937–2942, 2001  相似文献   

9.
The new 2-[2-(6-tert-butyl-2H-1,3-benzoxazin-3(4H)-yl)ethoxy]ethanol 1 and 2-[2-(6-pentyl-2H-1,3-benzoxazin-3(4H)-yl)ethoxy]ethanol 2 have been synthesized. Axially disubstituted silicon phthalocyanines 3 and 4 have been synthesized by introducing 2-[2-(6-tert-butyl-2H-1,3-benzoxazin-3(4H)-yl)ethoxy]ethanol and 2-[2-(6-pentyl-2H-1,3-benzoxazin-3(4H)-yl)ethoxy]ethanol at the axial positions of silicon(IV) phthalocyanine, respectively. The electrochemical properties of silicon phthalocyanines 3 and 4 were also investigated by cyclic voltammetry (CV) and square wave voltammetry. Voltammetric studies show that while 3 showed two reversible reduction and one irreversible oxidation couples, 4 showed two quasi-reversible reduction and one irreversible oxidation couples.  相似文献   

10.
Ion beam irradiation has been widely used to modify the structure and properties of membrane surface layers. In this study, the gas permeability and selectivity of an asymmetric polyimide membrane modified by He ion irradiation were investigated using a high vacuum apparatus equipped with a Baratron absolute pressure gauge at 76 cmHg and 35 °C. Specifically, we estimated the effects of the gas diffusion and solubility on the gas permeation properties of the asymmetric membranes with the carbonized skin layer prepared by ion irradiation. The asymmetric polyimide membranes were prepared by a dry–wet phase inversion process, and the surface skin layer on the membrane was irradiated by He ions at fluences of 1 × 1015 to 5 × 1015 ions/cm2 at 50 keV. The increase in the gas permeability of the He+‐irradiated asymmetric polyimide membrane is entirely due to an increase in the gas diffusion, and the gas selectivity increases of the membranes were responsible for the high gas diffusion selectivities. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 262–269, 2007.  相似文献   

11.
A study of gas transport properties of novel polynorbornenes with increasing length of an aliphatic pendant group R (CH3 , CH3(CH2)3 , CH3(CH2)5 , CH3(CH2)9 ) has been performed. These polymers were synthesized using novel organometallic complex catalysts via an addition polymerization route. This reaction route maintained the bridged norbornene ring structure in the final polymer backbone. Gas permeability and glass transition temperature were found to be higher than those for polynorbornenes prepared by ring-opening metathesis and reported in the literature. It was shown that for noncondensable gases such as H2 and He the selectivity over N2 decreased when the length of the pendant group increased, but remained relatively stable for the more condensable gases (O2 and CO2). The permeability coefficient is correlated well to the inverse of the fractional free volume of the polymers. The more condensable gases showed a deviation from this correlation for the longest pendant group, probably due to an increase of the solubility effect. This polymer series demonstrated a simultaneous increase in permeability and selectivity, uncommon for polymers. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 797–803, 1998  相似文献   

12.
The permeation properties of H2, N2, and CO2 were determined at 35 °C and pressures up to 15 atm in phase‐separated polyether‐b‐polyamide segmented block copolymers. These polymers contain poly(ethylene oxide) [PEO] or poly(tetramethylene oxide) [PTMEO] as the rubbery polyether phase and nylon‐6 [PA6] or nylon‐12 [PA12] as the hard polyamide phase. Extremely high values of polar (or quadrupolar)/nonpolar gas selectivities, coupled with high CO2 permeability coefficients, were observed. CO2/H2 selectivities as high as 9.8 and CO2/N2 selectivities as high as 56 were obtained in polymers with CO2 permeability coefficients of approximately 220 × 10−10 cm3(STP) cm/(cm2 s cmHg). As the amount of polyether increases, permeability increases. Gas permeability is higher in polymers with less polar constituents, PTMEO and PA12, than in those containing the more polar PEO and PA6 units. CO2/N2 and CO2/H2 selectivities are higher in polymers with higher concentrations of polar groups. These high selectivity values derive from large solubility selectivities in favor of CO2. Because CO2 is larger than H2 and has, therefore, a lower diffusion coefficient than H2, the weak size‐sieving ability of the rubbery polyether phase, which is the locus of most of the gas permeation, also contributes to high CO2/H2 selectivity. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2051–2062, 2000  相似文献   

13.
We report the synthesis and ion‐binding properties of four poly(crown‐ethers) displaying either one or two crown‐ethers (15‐crown‐5 or 18‐crown‐6) on every third carbon alongside the backbone. The polymers were synthesized by living anionic ring‐opening polymerization of disubstituted cyclopropane‐1,1‐dicarboxylates monomers. Cation binding of the polychelating polymers and corresponding monomers to Na+ and K+ was evaluated by picrate extraction and isothermal calorimetry titration. This novel family of poly(crown‐ethers) demonstrated excellent initial binding of the alkali ions to the polymers, with a higher selectivity for potassium. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2337–2345  相似文献   

14.
The paper presented novel synthesis of NaA zeolite membrane with good performance using microwave heating. The method involved two steps, prior seeding 120 nm of LTA crystals on substrate and then employing a secondary hydrothermal synthesis. Effects of seeding times, synthesis time and synthesis times were investigated in this work. The quality evaluation of membranes respectively used single component gases (HE and N2) and H2/N2 (equivalent volume) mixture. The ideal H2,/N2 selectivity increased from 1.90 of the substrate to 6.37 of the three-stage synthesized membrane, which was distinctly higher than the corresponding Knudsen diffusion selectivity of 3.74. However, the real H2/N2 selectivity of the three-stage synthesis was much lower than the corresponding ideal selectivity and close to the corresponding Knudsen diffusion selectivity of 3.74.  相似文献   

15.
A series of conjugated monomers ( 5a‐5d ) with various lateral substituents were symmetrically synthesized by the Sonogashira coupling reaction, in which central aromatic units (i.e. 9,9‐dipropylfluorenes) were linked to 2,2′:6′,2′‐terpyridyl (tpy) units via phenylene/ethynylene fragments. These light‐emitting monomers were further reacted with zinc(II) ions and subsequently anion exchanged to produce supramolecular main‐chain metallo‐polymers ( 6a‐6d ). The formation of polymers 6a‐6d was confirmed by the increased viscosities (up to 1.5–1.83 times) relative to those of their analogous monomers. The results of 1H NMR titration and UV‐Vis spectral titration revealed a detailed complexation process of metallo‐polymers by varying the molar ratios of zinc(II) ions to monomers. After coordination with zinc(II) ions, the luminescent and thermal properties of the polymers were enhanced by the formation of metallo‐supramolecular structures in contrast to their monomer counterparts. PLED devices employing these metallo‐polymers as emitters gave yellow to orange electroluminescence (EL) emissions with turn‐on voltages around 6 V. The maximum power efficiency, external quantum yield, and brightness of the PLED device containing polymer 6c were 0.33 cd A?1 (at 14 V), 1.02%, and 931 cd m?2 (at 14 V), respectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3243–3255, 2007  相似文献   

16.
A new bis(catechol) monomer, namely, 4,4′‐((1r,3r)‐adamantane‐2,2‐diyl)bis(benzene‐1,2diol) (THADM) was synthesized by condensation of 2‐adamantanone with veratrole followed by demethylation of the formed (1r,3r)‐2,2‐bis(3,4 dimethoxyphenyl)adamantane. Polycondensation of THADM and various compositions of THADM and 5,5,6′,6′‐tetrahydroxy‐3,3,3′,3′‐tetramethylspirobisindane was performed with 2,3,5,6‐tetrafluoroterephthalonitrile (TFTPN) to obtain the homopolymer and copolymers. These polymers demonstrated good solubility in common organic solvents such as dichloromethane, chloroform, and tetrahydrofuran and could be cast into tough films from their chloroform solutions. GPC analysis revealed that number average molecular weights of polymers were in the range 48,100–61,700 g mol−1, suggesting the formation of reasonably high molecular weight polymers. They possessed intrinsic microporosity with Brunauer‐Emmett‐Teller (BET) surface area in the range 703–741 m2 g−1. Thermogravimetric analysis of polymers indicated that 10% weight loss temperature was in the range 513–518 °C demonstrating their excellent thermal stability. THADM‐based polymer of intrinsic microporosity (PIM) showed P(CO2) = 1080, P(O2) = 232 and appreciable selectivity [α(CO2/CH4) = 22.6, α(CO2/N2) = 26.7, and α(O2/N2)= 5.7]. The gas permeability measurements revealed that with increase in the content of adamantane units in PIMs, selectivity increased and permeability decreased, following the trade‐off relationship. The gas separation properties of PIMs containing adamantane units were located close to 2008 Robeson upper bound for gas pairs such as CO2/CH4, CO2/N2, H2/N2, and O2/N2. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 16–24  相似文献   

17.
Hydrophilic/hydrophobic block copolymers as proton exchange membranes (PEMs) has become an emerging area of research in recent years. These copolymers were obtained through moderate temperature (~ 100 °C) coupling reactions, which minimize the ether‐ether interchanges between hydrophobic and hydrophilic telechelic oligomers via a nucleophilic aromatic substitution mechanism. The hydrophilic blocks were based on the nucleophilic step polymerization of 3,3′‐disulfonated, 4,4′‐dichlorodiphenyl sulfone with an excess 4,4′‐biphenol to afford phenoxide endgroups. The hydrophobic (fluorinated) blocks were largely based on decafluoro biphenyl (excess) and various bisphenols. The copolymers were obtained in high molecular weights and were solvent cast into tough membranes, which had nanophase separated hydrophilic and hydrophobic regions. The performance and structure‐property relationships of these materials were studied and compared to random copolymer systems. NMR results supported that the multiblock sequence had been achieved. They displayed superior proton conductivity, due to the ionic proton conducting channels formed through the self‐assembly of the sulfonated blocks. The nano‐phase separated morphologies of the copolymer membranes were studied and confirmed by atomic force microscopy. Through control of a variety of parameters, including ion exchange capacity and sequence lengths, performances as high, or even higher than those of the state‐of‐the‐art PEM, Nafion, were achieved. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1038–1051, 2009  相似文献   

18.
The title compounds of the type R-C(=NiPr) (-N′ iPrSiMe3) (with R = Me or nBu) as potential chemical vapor deposition (CVD) precursors have been synthesized and characterized by 1H, 13C, and 29Si NMR spectroscopy as well as by EI-MS and elemental analysis where necessary. Thermal properties, including stability, volatility, transport behavior, and vapor pressure, were evaluated by thermogravimetric analysis to confirm that they are suitable for the CVD procedure. Deposition was accomplished in a hot wall CVD reactor system, which qualitatively verified the ability of these compounds as CVD precursors.  相似文献   

19.
20.
A series of electrically conductive zwitterion hybrid materials were facilely synthesized with anionic acacia gum (AG) and cationic HCl doped polyaniline (PANI) through radical copolymerization method. A representative acacia gum‐polyaniline hybrid (AG‐PANI) was characterized using UV‐vis, FTIR, 1H NMR, and SEM. HCl doped AG‐PANI possesses zwitterion character due to the presence of NH on PANI and ? COO? of AG. The cyclic voltammogram of AG‐PANI showed three anodic peaks at 0.20 V, 0.58 V, and 0.64 V along with two cathodic peaks at 0.50 V and 0.40 V with large capacitive background currents. AG‐PANI exhibited electrical conductivity that was found dependent on the ratio of aniline to AG, temperature, and pH. Its electrical conductivity versus temperature plot indicated Mott's nearest‐neighbor hopping mechanism at the temperature range 83–323 K. The hybridization of AG and PANI yielded eco‐friendly advanced functional materials for technological applications. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号