首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ab initio and density functional theory studies have been performed on the hydrogen‐bonded complexes of neutral and protonated nicotine with ethanol, methanol, and trifluromethanol to explore their relative stability in a systematic way. Among all the hydrogen‐bonded nicotine complexes considered here, protonated forms in nicotine–ethanol and nicotine–methanol, and neutral form in nicotine–trifluromethanol complexes have been found to be the most stable. In the former two complexes, the proton attached to the pyrrolidine nitrogen acts as a strong hydrogen bond donor, whereas the pyrrolidine nitrogen atom acts as a hydrogen bond acceptor in the latter case. Neutral complex of nicotine with trifluromethanol has been found to possess a very short hydrogen bond (1.57 Å) and basis set superposition error corrected hydrogen bond energy value of 19 kcal/mol. The nature of the various hydrogen bonds formed has been investigated through topological aspects using Bader's atoms in molecules theory. From the calculated topological results, excellent linear correlation is shown to exist among the hydrogen bond length, electron density, and its Laplacian at the bond critical points for all the complexes considered. The natural bond orbital analysis has been carried out to investigate the charge transfer in the nicotine alcohol complexes. In contrast to the blue shifting behavior that is generally exhibited by other C? H···O hydrogen bonds involving sp3 carbon atom, the C? H···O hydrogen bond in the protonated nicotine–ethanol and methanol complexes has been found to be proper with red shifting in nature. © 2011 Wiley Periodicals, Inc.  相似文献   

2.
In the three isomeric salts, all C6H7N2O+·C6HCl2O4, of chloranilic acid (2,5‐dichloro‐3,6‐dihydroxy‐1,4‐benzoquinone) with 2‐, 3‐ and 4‐carbamoylpyridine, namely, 2‐carbamoylpyridinium hydrogen chloranilate (systematic name: 2‐carbamoylpyridinium 2,5‐dichloro‐4‐hydroxy‐3,6‐dioxocyclohexa‐1,4‐dienolate), (I), 3‐carbamoylpyridinium hydrogen chloranilate, (II), and 4‐carbamoylpyridinium hydrogen chloranilate, (III), acid–base interactions involving H‐atom transfer are observed. The shortest interactions between the cation and the anion in (I) and (II) are pyridinium N—H...(O,O) bifurcated hydrogen bonds, which act as the primary intermolecular interaction in each crystal structure. In (III), an amide N—H...(O,O) bifurcated hydrogen bond, which is much weaker than the bifurcated hydrogen bonds in (I) and (II), connects the cation and the anion.  相似文献   

3.
The crystal structure of the title compound, C12H12O6P2, displays two different regions alternating along the a axis: a hydrogen‐bonded region encompassing the end‐positioned phosphonic acid groups and a hydrophobic region formed by the aromatic spacers. The asymmetric unit contains only half of the biphenyl‐4,4′‐diphosphonic acid (4,4′‐bpdp) molecule, which is symmetric with an inversion centre imposed at the mid‐point between the two aromatic rings. The periodic organization of the molecules is controlled by two strong O—H...O interactions between the phosphonic acid sites. Weak C—H...π interactions are established in the aromatic regions.  相似文献   

4.
Cocrystallization of 2,2′‐dithiodibenzoic acid with isonicotinohydrazide from methanol solution yields the 1:2 cocrystal 2,2′‐dithiodibenzoic acid–isonicotinohydrazide (1/2), C14H10O4S2·2C6H7N3O. The component molecules are linked by intermolecular O—H...N, N—H...O, N—H...N and C—H...O hydrogen bonds into layers running parallel to the (010) plane, and these layers are further linked into a three‐dimensional framework structure by means of weak aromatic π–π stacking interactions. As a potential cocrystallization agent, isonicotinohydrazide may be used for effective and versatile synthetic supramolecular strategies utilizing hydrogen bonding of specific molecular building blocks.  相似文献   

5.
The combination of biphenyl‐4,4′‐dicarboxylic acid (H2bpa) and the bent dipyridyl base 2,5‐di‐4‐pyridyl‐1,3,4‐oxadiazole (4‐bpo) in a 1:1 molar ratio leads to the formation of the mol­ecular cocrystal (H2bpa)·(4‐bpo) or C14H10O4·C12H8N4O. The asymmetric unit contains one‐half of an H2bpa unit lying across a centre of inversion and one‐half of a 4‐bpo mol­ecule lying across a twofold rotation axis. Inter­molecular O—H⋯N inter­actions connect the acid and base mol­ecules to form a one‐dimensional zigzag chain. Through further weak C—H⋯O hydrogen bonds between adjacent chains, a two‐dimensional sheet‐like supramolecular network is afforded. As an extended analogue of terephthalic acid (H2tp), the backbone geometry of H2bpa has an evident influence on the hydrogen‐bonding pattern of the title cocrystal compared with that of (H2tp)·(4‐bpo).  相似文献   

6.
A series of main‐chain, thermotropic, liquid‐crystalline (LC), hydrogen‐bonded polymers or self‐assembled structures based on 4,4′‐bipyridyl as a hydrogen‐bond acceptor and aliphatic dicarboxylic acids, such as adipic and sebacic acids, as hydrogen‐bond donors were prepared by a slow evaporation technique from a pyridine solution and were characterized for their thermotropic, LC properties with a number of experimental techniques. The homopolymer of 4,4′‐bipyridyl with adipic acid exhibited high‐order and low‐order smectic phases, and that with sebacic acid exhibited only a high‐order smectic phase. Like the homopolymer with adipic acid, the two copolymers of 4,4′‐bipyridyl with adipic and sebacic acids (75/25 and 25/75) also exhibited two types of smectic phases. In contrast, the copolymer of 4,4′‐bipyridyl with adipic and sebacic acids (50/50), like the homopolymer with sebacic acid, exhibited only one high‐order smectic phase. Each of them, including the copolymers, had a broad temperature range of LC phases (36–51 °C). The effect of copolymerization for these hydrogen‐bonded polymers on the thermotropic properties was examined. Generally, copolymerization increased the temperature range of LC phases for these polymers, as expected, with a larger decrease in the crystal‐to‐LC transition than in the LC‐to‐isotropic transition. Additionally, it neither suppressed the formation of smectic phases nor promoted the formation of a nematic phase in these hydrogen‐bonded polymers, as usually observed in many thermotropic LC polymers. The thermal transitions for all of them, measured by differential scanning calorimetry, were well below their decomposition temperatures, as measured by thermogravimetric analysis, which were in the temperature range of 193–210 °C. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1282–1295, 2003  相似文献   

7.
The title salt, C13H12N3+·H2PO4, contains a nonplanar 2‐(2‐aminophenyl)‐1H‐benzimidazol‐3‐ium cation and two different dihydrogen phosphate anions, both situated on twofold rotation axes in the space group C2. The anions are linked by O—H...O hydrogen bonds into chains of R22(8) rings. The anion chains are linked by the cations, via hydrogen‐bonding complementarities and electrostatic interactions, giving rise to a sheet structure with alternating rows of organic cations and inorganic anions. Comparison of this structure with that of the pure amine reveals that the two compounds generate characteristically different sheet structures. The anion–anion chain serves as a template for the assembly of the cations, suggesting a possible application in the design of solid‐state materials.  相似文献   

8.
In bis(2‐carboxypyridinium) hexafluorosilicate, 2C6H6NO2+·SiF62−, (I), and bis(2‐carboxyquinolinium) hexafluorosilicate dihydrate, 2C10H8NO2+·SiF62−·2H2O, (II), the Si atoms of the anions reside on crystallographic centres of inversion. Primary inter‐ion interactions in (I) occur via strong N—H...F and O—H...F hydrogen bonds, generating corrugated layers incorporating [SiF6]2− anions as four‐connected net nodes and organic cations as simple links in between. In (II), a set of strong N—H...F, O—H...O and O—H...F hydrogen bonds, involving water molecules, gives a three‐dimensional heterocoordinated rutile‐like framework that integrates [SiF6]2− anions as six‐connected and water molecules as three‐connected nodes. The carboxyl groups of the cation are hydrogen bonded to the water molecule [O...O = 2.5533 (13) Å], while the N—H group supports direct bonding to the anion [N...F = 2.7061 (12) Å].  相似文献   

9.
The 1:1 complexes N,N′‐bis(2‐pyridyl)­benzene‐1,4‐di­amine–anilic acid (2,5‐di­hydroxy‐1,4‐benzo­quinone) (1/1), C16H14N4·C6H4O4, (I), and N,N′‐bis(2‐pyridyl)­bi­phenyl‐4,4′‐di­amine–anilic acid (1/1), C22H18N4·C6H4O4, (II), have been prepared and their solid‐state structures investigated. The component mol­ecules of these complexes are connected via conventional N—H?O and O—H?N hydrogen bonds, leading to the formation of an infinite one‐dimensional network generated by the cyclic motif R(9). The anilic acid molecules in both crystal structures lie around inversion centres and the observed bond lengths are typical for the neutral mol­ecule. Nevertheless, the pyridine C—N—C angles [120.9 (2) and 120.13 (17)° for complexes (I) and (II), respectively] point to a partial H‐atom transfer from anilic aicd to the bispyridyl­amine, and hence to H‐atom disorder in the OHN bridge. The bispyridyl­amine mol­ecules of (I) and (II) also lie around inversion centres and exhibit disorder of their central phenyl rings over two positions.  相似文献   

10.
In the crystal structures of 2‐amino‐5‐chloropyridinium trichloroacetate, C5H6ClN2+·C2Cl3O2, (I), and 2‐methyl‐5‐nitroanilinium trichloroacetate monohydrate, C7H9N2O2+·C2Cl3O2·H2O, (II), the protonated planar 2‐amino‐5‐chloropyridinium [in (I)] and 2‐methyl‐5‐nitroanilinium [in (II)] cations interact with the oppositely charged trichloroacetate anions to form hydrogen‐bonded one‐dimensional chains in (I) and, together with water molecules, a three‐dimensional network in (II). The crystals of (I) exhibit nonlinear optical properties. The second harmonic generation efficiency in relation to potassium dihydrogen phosphate is 0.77. This work demonstrates the usefulness of trichloroacetic acid in crystal engineering for obtaining new materials for nonlinear optics.  相似文献   

11.
The title compound (systematic name: 4,4′‐ethyl­ene­dipyridinium dimaleate), C12H12N22+·2C4H3O4?, is a 1:2 adduct of 1,2‐bis(4‐pyridyl)­ethyl­ene (BPE) and maleic acid (MA). The interaction between the two components in the molecular complex is due to intermolecular hydrogen bonding via an N+—H?O? hydrogen bond.  相似文献   

12.
In the crystal structures of 2‐amino‐4,6‐dimethoxypyrimidinium 2,4,6‐trinitrophenolate (picrate), C6H10N3O2+·C6H2N3O7, (I), and 2,4‐diamino‐5‐(4‐chlorophenyl)‐6‐ethylpyrimidin‐1‐ium (pyrimethaminium or PMN) picrate dimethyl sulfoxide solvate, C12H14ClN4+·C6H2N3O7·C2H6OS, (II), the 2‐amino‐4,6‐dimethoxypyrimidine and PMN cations are protonated at one of the pyrimidine N atoms. The picrate anion interacts with the protonated cations through bifurcated N—H...O hydrogen bonds, forming R21(6) and R12(6) ring motifs. In (I), Z′ = 2. In (II), two inversion‐related PMN cations are connected through a pair of N—H...N hydrogen bonds involving the 4‐amino group and the uncharged N atom of the pyrimidine ring, forming a cyclic hydrogen‐bonded R22(8) motif. In addition to the pairing, the O atom of the dimethyl sulfoxide solvent molecule bridges the 2‐amino and 4‐amino groups on both sides of the paired bases, resulting in a self‐complementary …DADA… array of quadruple hydrogen‐bonding patterns.  相似文献   

13.
In the four compounds of chloranilic acid (2,5‐dichloro‐3,6‐dihydroxycyclohexa‐2,5‐diene‐1,4‐dione) with pyrrolidin‐2‐one and piperidin‐2‐one, namely, chloranilic acid–pyrrolidin‐2‐one (1/1), C6H2Cl2O4·C4H7NO, (I), chloranilic acid–pyrrolidin‐2‐one (1/2), C6H2Cl2O4·2C4H7NO, (II), chloranilic acid–piperidin‐2‐one (1/1), C6H2Cl2O4·C5H9NO, (III), and chloranilic acid–piperidin‐2‐one (1/2), C6H2Cl2O4·2C5H9NO, (IV), the shortest interactions between the two components are O—H...O hydrogen bonds, which act as the primary intermolecular interaction in the crystal structures. In (II), (III) and (IV), the chloranilic acid molecules lie about inversion centres. For (III), this necessitates the presence of two independent acid molecules. In (I), there are two formula units in the asymmetric unit. The O...O distances are 2.4728 (11) and 2.4978 (11) Å in (I), 2.5845 (11) Å in (II), 2.6223 (11) and 2.5909 (10) Å in (III), and 2.4484 (10) Å in (IV). In the hydrogen bond of (IV), the H atom is disordered over two positions with site occupancies of 0.44 (3) and 0.56 (3). This indicates that proton transfer between the acid and base has partly taken place to form ion pairs. In (I) and (II), N—H...O hydrogen bonds, the secondary intermolecular interactions, connect the pyrrolidin‐2‐one molecules into a dimer, while in (III) and (IV) these hydrogen bonds link the acid and base to afford three‐ and two‐dimensional hydrogen‐bonded networks, respectively.  相似文献   

14.
Crystals of 5‐chloropyridin‐2‐amine–(2E)‐but‐2‐enedioate (2/1), 2C5H5ClN2·C4H4O4, (I), and 2‐aminopyridinium dl ‐3‐carboxy‐2‐hydroxypropanoate, C5H7N2+·C4H5O5, (II), are built from the neutral 5‐chloropyridin‐2‐amine molecule and fumaric acid in the case of (I) and from ring‐N‐protonated 2‐aminopyridinium cations and malate anions in (II). The fumaric acid molecule lies on an inversion centre. In (I), the neutral 5‐chloropyridin‐2‐amine and fumaric acid molecules interact via hydrogen bonds, forming two‐dimensional layers parallel to the (100) plane, whereas in (II), oppositely charged units interact via ionic and hydrogen bonds, forming a three‐dimensional network.  相似文献   

15.
The title compounds, bis(μ‐3,5‐dichloro‐2‐oxidobenzoato)‐κ3O1,O2:O23O2:O1,O2‐bis[(3,5‐dichloro‐2‐hydroxybenzoic acid‐κO1)(1,10‐phenanthroline‐κ2N,N′)copper(II)], [Cu2(C7H2Cl2O3)2(C7H4Cl2O3)2(C12H8N2)2], (I), and bis(μ‐5‐chloro‐2‐oxidobenzoato)‐κ3O1,O2:O13O1:O1,O2‐bis[(5‐chloro‐2‐hydroxybenzoic acid‐κO1)(1,10‐phenanthroline‐κ2N,N′)copper(II)] ethanol monosolvate, [Cu2(C7H3ClO3)2(C7H5ClO3)2(C12H8N2)2]·C2H6O, (II), contain centrosymmetric dinuclear complex molecules in which Cu2+ cations are surrounded by a chelating 1,10‐phenanthroline ligand, a chelating 3,5‐dichloro‐2‐oxidobenzoate or 5‐chloro‐2‐oxidobenzoate anionic ligand and a monodentate 3,5‐dichloro‐2‐hydroxybenzoic acid or 5‐chloro‐2‐hydroxybenzoic acid ligand. The chelating benzoate ligand also bridges to the other Cu2+ ion in the molecule, but the O atom involved in the bridge is different in the two complexes, being the phenolate O atom in (I) and a carboxylate O atom in (II). The bridge completes a 4+1+1 axially elongated tetragonal–bipyramidal arrangement about each Cu2+ cation. The complex molecules of both compounds are linked into one‐dimensional supramolecular chains through O—H...O hydrogen bonds.  相似文献   

16.
In the title compound, C20H16Cl2O4S2, the mol­ecules lie across centres of inversion. A single type of intermolecular C—H?O hydrogen bond, with a C?O distance of 3.254 (3) Å and a C—H?O angle of 132°, links the mol­ecules into ladders whose uprights form C(6) chains and whose rungs enclose centrosymmetric R(22) rings.  相似文献   

17.
The title free base porphyrin compound forms hydrogen‐bonded adducts with N,N‐dimethylformamide, C44H30N4O4·4C3H7NO, (I), a mixture of N,N‐dimethylformamide and water, C44H30N4O4·4C3H7NO·H2O, (II), and a mixture of N,N‐dimethylacetamide and water, C44H30N4O4·6C3H7NO·2H2O, (III). Total solvation of the four hydroxy functions of the porphyrin molecules characterizes all three compounds, thus preventing its supramolecular association into extended network architectures. In (I), the asymmetric unit consist of two five‐component adduct species, while in (III), the nine‐component entities reside on centres of inversion. This report provides the first structural characterizations of the free base tetra(hydroxyphenyl)porphyrin. It also demonstrates that the presence of strong Lewis bases, such as dimethylformamide or dimethylacetamide, in the crystallization mixture prevents direct supramolecular networking of the porphyrin ligands via O—H...O—H hydrogen bonds, due to their competing O—H...N(base) interaction with the hydroxy functions. The crystal packing of compounds (I)–(III) resembles that of other hydrogen‐bonding‐assisted tetraarylporphyrin clathrates.  相似文献   

18.
Rapid synthesis of 3‐cyano‐4,6‐dimethyl‐2‐pyridone 3 , using piprazine as a catalyst was reported. X‐ray data of the 4,6‐dimethyl‐2‐oxo‐1,2‐dihydropyridine‐3‐carbonitrile exhibited its oxo form. Synthesis of isoquinolinecarbonitrile and pyridylpyridazine using compound 3 was investigated. Reactivity of the synthesized pyridone toward different organic reagents was also studied. J. Heterocyclic Chem., (2011).  相似文献   

19.
Carboxylate molecular crystals have been of interest due to the presence of hydrogen bonding, which plays a significant role in chemical and crystal engineering, as well as in supramolecular chemistry. Acid–base adducts possess hydrogen bonds which increase the thermal and mechanical stability of the crystal. 2,2′‐Thiodiacetic acid (Tda) is a versatile ligand that has been widely explored, employing its multidendate and chelating coordination abilities with many metals; however, charge‐transfer complexes of thiodiacetic acid have not been reported. Two salts, namely ethylenediaminium 2,2′‐thiodiacetate, C2H10N22+·C4H4O4S22−, denoted Tdaen, and 2‐aminoanilinium 2‐(carboxymethylsulfanyl)acetate, C6H9N2+·C4H5O4S, denoted Tdaophen, were synthesized and characterized by IR, 1H and 13C NMR spectroscopies, and single‐crystal X‐ray diffraction. In these salts, Tda reacts with the aliphatic (ethylenediamine) and aromatic (o‐phenylenediamine) diamines, and deprotonates them to form anions with different valencies and different supramolecular networks. In Tdaen, the divalent Tda2− anions form one‐dimensional linear supramolecular chains and these are extended into a three‐dimensional sandwich‐type supramolecular network by interaction with the ethylenediaminium cations. However, in Tdaophen, the monovalent Tda anions form one‐dimensional zigzag supramolecular chains, which are extended into a three‐dimensional supramolecular network by interaction with the 2‐aminoanilinium cations. Thus, both three‐dimensional structures display different ring motifs. The structures of these diamines, which are influenced by hydrogen‐bonded assemblies in the molecular crystals, are discussed in detail.  相似文献   

20.
A systematic quantum chemical study reveals the effects of chirality on the intermolecular interactions between two chiral molecules bound by hydrogen bonds. The methods used are second‐order Møller–Plesset perturbation theory (MP2) with the 6‐311++g(d,p) basis set. Complexes via the O? H···O hydrogen bond formed between the chiral 2‐methylol oxirane (S) and chiral HOOH (P and M) molecules have been investigated, which lead to four diastereomeric complexes. The nomenclature of the complexes used in this article is enantiomeric configuration sign corresponding to English letters. Such as: sm, sp. The relative positions of the methylol group and the hydrogen peroxide are designated as syn (same side) and anti (opposite side). The largest chirodiastaltic energy was ΔEchir = ?1.329 kcal mol?1 [9% of the counterpoise correct average binding energy De(corr)] between the sm‐syn and sp‐anti in favor of sm‐syn. The largest diastereofacial energy was ?1.428 kcal mol?1 between sm‐syn and sm‐anti in favor of sm‐syn. To take into account solvents effect, the polarizable continuum model (PCM) method has been used to evaluate the chirodiastaltic energies, and diastereofacial energies of the 2‐methylol oxirane···HOOH complexes. The chiral 2,3‐dimethylol oxirane (S, S) is C2 symmetry which offers two identical faces. Hence, the chirodiastaltic energy is identical to the diastereomeric energy, and is ΔEchir = 0.563 kcal mol?1 or 5.3% of the De(corr) in favor of s,s‐p. The optimized structures, interaction energies, and chirodiastaltic energies for various isomers were estimated. The harmonic frequencies, IR intensities, rotational constants, and dipole moments were also reported. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号