首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Four new fluorescent conjugated vinylene‐copolymers incorporating quinoline or bisquinoline segments along the backbone were synthesized by Heck coupling. Three of them were fluorenevinylene‐copolymers and contained quinoline ( PQFV , PQFVT ) or bisquinoline segments ( PBQFV ). One of them ( PBQPV ) was phenylenevinylene‐copolymer and contained bisquinoline segments. All the copolymers were soluble in common organic solvents and had relatively low glass transition temperature (Tg = 50–56 °C for fluorenevinylenes and Tg < 25 °C for phenylenevinylene). In THF solutions, the quinoline‐containing copolymers showed absorption maxima at 411–420 nm while the bisquinoline‐containing ones exhibited maxima at 357–361 nm. The emission maxima of solutions were 465–490 nm. The copolymers showed high quantum yields up to 64%. The films exhibited absorption and emission maxima in the range of 371–437 nm and 480–521 nm, respectively. All copolymers revealed reversible reduction with electron affinity of 2.66–3.53 eV and irreversible oxidation scans with ionization potential of 5.39–5.53 eV. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3370–3379, 2009  相似文献   

2.
The copolymerization of ethylene with triphenylamine (TPA)‐containing α‐olefin monomer 1 using a rac‐Et(Ind)2ZrCl2 ( EBIZr )/MAO catalytic system was investigated to prepare polyethylene with pendent TPA groups. Despite the presence of a large excess of TPA moieties, the polymerization reactions efficiently produce copolymers of high‐molecular‐weight with the comonomer incorporation up to 6.1 mol % upon varying the comonomer concentration in the feed. Inspection of the aliphatic region of the 13C‐NMR spectrum and the estimated copolymerization parameters (r 1 ≈ 0 for 1 and rE ≈ 43 for ethylene) reveal the presence of isolated comonomer units in the polymer chain. While UV–vis absorption measurements of the copolymers show an invariant absorption feature, PL spectra exhibit a slightly red‐shifted emission with increasing content of 1 in the polymer chain. All the copolymers show high thermal stability (Td5 > 436 °C), and the electrochemical stability toward oxidation is also observed. Particularly, the copolymer displays hole‐transporting ability for the stable green emission of Alq3 when incorporated into the hole‐transporting layer of an electroluminescence device. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5816–5825, 2008  相似文献   

3.
We have used Suzuki coupling to prepare a series of alternating copolymers featuring coplanar cyclopentadithiophene and hole‐transporting carbazole units. We observed quenching in the photoluminescence spectra of our polymers after incorporating pendent electron‐deficient perylene diimide ( PDI ) moieties on the side chains, indicating more efficient photoinduced electron transfer. Electrochemical measurements revealed that the PDI ‐containing copolymers displayed reasonable and sufficient offsets of the energy levels of their lowest unoccupied molecular orbitals for efficient charge dissociation. The performance of bulk heterojunction photovoltaic cells incorporating the copolymer/[6,6]‐phenyl‐C61‐butyric acid methyl ester blends (1:4, w/w) was optimized when the active layer had a thickness of 70 nm. The photocurrents of the devices were enhanced as a result of the presence of the PDI moieties, thereby leading to improved power conversion efficiencies. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1298–1309, 2010  相似文献   

4.
Four different types of conjugated copolymers, consisting of alternating structures of phenothiazinylene vinylene and phenylene vinylene derivatives such as phenylene vinylene, 1,1′‐biphenyl‐4,4′‐ylene vinylene, 2‐methoxy‐5‐(2‐ethylhexyloxy)‐1,4‐phenylene vinylene, and 9,10‐anthrylene vinylene, were prepared by Horner–Emmons condensation between appropriate diphosphonates and dialdehydes. Single‐layer and double‐layer light‐emitting diodes were fabricated with the synthesized conjugated polymers, and their electroluminescent properties were investigated. Poly(N‐2‐ethylhexyl‐3,6‐phenothiazinylene vinylene‐alt‐9,10‐anthrylene vinylene), containing phenothiazinylene vinylene and anthrylene vinylene as repeat units, emitted a reddish‐orange color with Commission Internationale de l'Eclairage coordinates of x = 0.6173 and y = 0.3814 that was very similar to the National Television System Committee standard red, and it showed a bipolar carrier‐injection/transporting capability caused by electron‐withdrawing anthracene and electron‐donating amino groups. Poly[N‐2‐ethylhexyl‐3,6‐phenothiazinylene vinylene‐alt‐2‐methoxy‐5‐(2‐ethylhexyloxy)‐1,4‐phenylene vinylene], containing phenothiazinylene vinylene and dialkoxy phenylene vinylene moieties, showed excellent hole‐injection/transporting capability. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2502–2511, 2003  相似文献   

5.
Three series of poly(phenylene vinylene) (PPV) derivatives containing hole‐transporting triphenylamine derivatives [N‐(4‐octoxylphenyl)diphenylamine, N,N′‐di(4‐octyloxylphenyl)‐N,N′‐diphenyl‐1,4‐phenylenediamine, and N,N′‐di(4‐octoxylphenyl)‐N,N′‐diphenylbenzidine] (donor) and electron‐transporting oxadiazole unit (2,5‐diphenyl‐1,3,4‐oxadiazole) (acceptor) in the main chain were synthesized by improved Wittig copolymerization. The resulting donor–acceptor (D‐A) polymers are readily soluble in common organic solvents, such as chloroform, dichloroethane, THF, and toluene. The polymers containing oxadiazole group exhibit good thermal stability with 5% weight loss above 400 °C. The intramolecular charge‐transfer was observed in these D‐A polymers. In comparison with corresponding polymers without oxadiazole unit, the single‐layer devices based on the D‐A polymers showed much improved electroluminescent properties, because of the balanced charge injection and transport. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1566–1576, 2008  相似文献   

6.
Methoxy‐substituted poly(triphenylamine)s, poly‐4‐methoxytriphenylamine ( PMOTPA ), and poly‐N,N‐bis(4‐methoxyphenyl)‐N′,N′‐diphenyl‐p‐phenylenediamine ( PMOPD ), were synthesized from the nickel‐catalyzed Yamamoto and oxidative coupling reaction with FeCl3. All synthesized polymers could be well characterized by 1H and 13C NMR spectroscopy. These polymers possess good solubility in common organic solvent, thermal stability with relatively high glass‐transition temperatures (Tgs) in the range of 152–273 °C, 10% weight‐loss temperature in excess of 480 °C, and char yield at 800 °C higher than 79% under a nitrogen atmosphere. They were amorphous and showed bluish green light (430–487 nm) fluorescence with quantum efficiency up to 45–62% in NMP solution. The hole‐transporting and electrochromic properties are examined by electrochemical and spectroelectrochemical methods. All polymers exhibited reversible oxidation redox peaks and Eonset around 0.44–0.69 V versus Ag/AgCl and electrochromic characteristics with a color change under various applied potentials. The series of PMOTPA and PMOPD also showed p‐type characteristics, and the estimated hole mobility of O ‐ PMOTPA and Y ‐ PMOPD were up to 1.5 × 10?4 and 5.6 × 10?5 cm2 V?1 s?1, respectively. The FET results indicate that the molecular weight, annealing temperature, and polymer structure could crucially affect the charge transporting ability. This study suggests that triphenylamine‐containing conjugated polymer is a multifunctional material for various optoelectronic device applications. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4037–4050, 2009  相似文献   

7.
A poly(p‐phenylenevinylene) derivative (PPV–TPA)] and a series of statistical copolyfluorenes (PF–TPA)] containing oxadiazole and triphenylamine segments along the main chain were synthesized by the Heck reaction and nickel‐mediated coupling, respectively. The PF–TPA copolyfluorenes with relatively low contents of oxadiazole and triphenylamine units were readily soluble in common organic solvents, whereas the other copolyfluorenes displayed lower solubility. PPV–TPA showed excellent solubility in solvents such as tetrahydrofuran (THF), dichloromethane, chloroform, and toluene. Thin films of the polymers absorbed light in the range of 375–396 nm and had optical band gaps of 2.76–2.98 eV. They emitted blue‐green light with a maximum at 414–522 nm. The fluorescence quantum yields in THF solutions were 0.08–0.53. The copolyfluorene PF–TPA thin films with high contents of oxadiazole and triphenylamine moieties emitted pure blue light that remained stable even after annealing at 150 °C for 4 h in air. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3556–3566, 2006  相似文献   

8.
A series of vinylene‐linked copolymers based on electron‐deficient benzobisthiazole and electron‐rich fluorene moieties were synthesized via Horner–Wadsworth–Emmons polymerization. Three different polymers P1 , P2 , and P3 , were prepared bearing octyl, 3,7‐dimethyloctyl, and 2‐(2‐ethoxy)ethoxyethyl side chains, respectively. The polymers all possessed moderate molecular weights, good solubility in aprotic organic solvents, and high fluorescence quantum efficiencies in dilute solutions. P2 , which bore branched 3,7‐dimethyloctyl side chains, exhibited better solubility than the other polymers, but also exhibited the lowest thermal decomposition temperature of all polymers. Overall, the impact of the side chains on the polymers optical properties in solution was negligible as all three polymers gave similar absorption and emission spectra in both solution and film. Guest‐host light‐emitting diodes using dilute blends of the polymers in a poly(N‐vinylcarbazole) host gave blue‐green emission with P2 exhibiting the highest luminous efficiency, 0.61 Cd/A at ~500 nm. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

9.
We have developed efficient white‐light‐emitting polymers through the incorporation of low‐bandgap orange‐light‐emitting benzoselenadiazole ( BSeD ) moieties into the backbone of a blue‐light‐emitting bipolar polyfluorene (PF) copolymer, which contains hole‐transporting triphenylamine and electron‐transporting oxadiazole pendent groups. By carefully controlling the concentrations of the low‐energy‐emitting species in the resulting copolymers, partial energy transfer from the blue‐fluorescent PF backbone to the orange‐fluorescent segments led to a single polymer emitting white light and exhibiting two balanced blue and orange emissions simultaneously. Efficient polymer light‐emitting devices prepared using this copolymer exhibited luminance efficiencies as high as 4.1 cd/A with color coordinates (0.30, 0.36) located in the white‐light region. Moreover, the color coordinates remained almost unchanged over a range of operating potentials. A mechanistic study revealed that energy transfer from the PF backbone to the low‐bandgap segments, rather than charge trapping, was the main operating process involved in the electroluminescence process. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2938–2946, 2007  相似文献   

10.
A series of hole and electron transporting random and block copolymers consisting of triphenylamine moiety as a hole transporting unit and oxadiazole moiety as an electron transporting unit have been prepared via a nitroxide mediated radical polymerization. Oxadiazole monomers with t‐butyl or trifluoromethyl groups, 2 and 7, respectively, were used for copolymerization. Photoluminescent measurements of polymers revealed that the formation of the exciplex between triphenylamine and oxadiazole units tends to occur in the order of random copolymers, block copolymers, and polymer blends, implying phase‐separated morphologies in block or blend systems. The polymers were applied for OLED devices, and we found that the morphology in the polymer layer critically affected device performance. The block copolymer comprising hole and electron transporting units with the composition of 14/86 showed the highest external quantum efficiency over 10%. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1461–1468, 2010  相似文献   

11.
The synthesis of new random poly(2,7‐fluorenylene‐vinylene)s was achieved by a Suzuki–Heck cascade polymerization reaction. The poly(fluorenylene‐vinylene) base structure was modified by the regio‐random incorporation of 1‐cyano‐2,5‐phenylene as electron withdrawing unit ( CN‐PFV1 ) and its properties were compared with terpolymers also embodying 1,4‐dioctyloxy‐2,5‐phenylene ( CN‐PFV2 ) or 3,6‐N‐octylcarbazole ( CN‐PFV3 ) as electron‐donating moieties. Thermal analysis revealed a high thermal stability (Td > 389 °C) and the absence of glass transitions for all polymers. Cyclic voltammetry indicated a high electron affinity of the materials (2.96–3.21 eV) attributed to the presence of the cyano‐containing comonomer. In dilute solutions, the copolymers showed a broad green fluorescence with quantum yields ranging from 0.42 to 0.79, while in the solid state, a relatively narrow emission centered at ~ 560 nm, governed by the low‐energy segments within the π‐conjugated backbone, was observed. The electroluminescence properties of the materials were tested in OLED devices of ITO/PEDOT‐PSS/ CN‐PFV1‐3 /Ca/Al or ITO/PEDOT‐PSS/ CN‐PFV1‐3 /Alq3/Ca/Al configurations, showing a bright green‐yellow emission that, in the case of CN‐PFV2 , reached 1403 cd/m2 with efficiencies as high as 0.13 cd/A. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6051–6063, 2008  相似文献   

12.
Poly(9,9‐dihexylfluorene‐2,7‐vinylene‐alt‐dibenzothiophene‐2,8‐vinylene) (PS) and poly(9,9‐dihexylfluorene‐2,7‐vinylene‐alt‐dibenzothiophene‐5,5‐dioxide‐2,8‐ vinylene) (PSO) as well as corresponding model compounds were synthesized by Heck coupling. Both the polymers and model compounds were readily soluble in common organic solvents such as tetrahydrofuran, dichloromethane, chloroform, and toluene. The polymers showed a decomposition temperature at ~430 °C and a char yield of about 65% at 800 °C in N2. The glass‐transition temperatures of the polymers were almost identical (75–77 °C) and higher than those of the model compounds (26–45 °C). All samples absorbed around 390 nm, and their optical band gaps were 2.69–2.85 eV. They behaved as blue‐greenish light emitting materials in both solutions and thin films, with photoluminescence emission maxima at 450–483 nm and photoluminescence quantum yields of 0.52–0.72 in solution. Organic light‐emitting diodes with an indium tin oxide/poly(ethylene dioxythiophene):poly(styrene sulfonic acid)/polymer/Mg:Ag/Ag configuration with polymers PS and PSO as emitting layers showed green electroluminescence with maxima at 530 and 540 nm, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6790–6800, 2006  相似文献   

13.
The study of the electrochemical fluorescence switching properties of the conjugated copolymers containing fluorene, triphenylamine, and 1,3‐diphenylimidazolidin‐2‐one moieties is reported. The polymers show high fluorescence quantum yields, excellent thermal stability, and good solubility in polar organic solvents. While the polymer emits blue light under UV irradiation, the fluorescence intensity is quenched upon electrochemical oxidation. The fluorescent behavior can be reversibly switched between nonfluorescent (oxidized) state and strong fluorescence (neutral) state with a high contrast ratio (If/If0) of 16.3. The role of the electrochemical oxidation of the triphenylamine moieties is to generate the corresponding radical cations that lead to fluorescence quenching in the solid matrix. © 2012 Wiley Periodicals, Inc. J. Polym. Sci. Part A: Polym Chem, 2012  相似文献   

14.
A bipolar dibromo monomer, bis‐(4‐bromophenyl)[4‐(3,5‐diphenyl‐1,2,4‐ triazole‐4‐yl)‐phenyl]amine ( 9 ), containing electro‐rich triphenylamine and electro‐deficient 1,2,4‐triazole moieties was newly synthesized and characterized. Two fluorescent fluorene‐based conjugated copolymers ( TPAF , TPABTF ) were prepared via facile Suzuki coupling from the dibromo bipolar monomer, 4,7‐dibromo‐2,1,3‐benzothiadiazole ( BTDZ ), and 9,9‐dioctylfluorene. They were characterized by molecular weight determination, IR, NMR, DSC, TGA, solubility, absorption and photoluminescence spectra, and cyclic voltammetry. The polymers showed good solubility in common organic solvents such as dichloromethane, chloroform, tetrahydrofuran, and dichlorobenzene at room temperature. They had glass transition temperatures (Tg) higher than 135 °C and 5% degradation temperatures in nitrogen atmosphere were higher than 428 °C. Single layer polymer light‐emitting diodes (PLED) of ITO/PEDOT:PSS/polymer/metal showed a blue emission at 444 nm and Commission Internationale de I'Eclairage (CIE) 1931 color coordinates of (0.16, 0.13) for TPAF . The device using TPABTF as emissive material showed electroluminescence at 542 nm with CIE1931 of (0.345, 0.625), low turn‐on voltage of 5 V, a maximum electroluminance of 696 cd/m2, and a peak efficiency of 2.02 cd/A. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6231–6245, 2009  相似文献   

15.
New conjugated copolymers of quinoxaline (AQ) and thienopyrazine (ATP) with vinylene (V) or ethynylene (E), poly[2,3‐bis(4‐(2‐ethylhexyloxy)phenyl)‐quinoxaline vinylene] (PAQV), poly[2,3‐bis(4‐(2‐ethylhexyloxy)phenyl)‐quinoxaline ethynylene)] (PAQE), poly[2,3‐bis(4‐(2‐ethylhexyloxy)phenyl)‐thieno[3,4‐b]pyrazine vinylene] (PATPV), and poly[2,3‐bis(4‐(2‐ethylhexyloxy)phenyl)‐thieno[3,4‐b]pyrazine ethynylene] (PATPE), were successfully synthesized by Stille coupling reaction. The optical band gaps of the PAQV, PAQE, PATPV, and PATPE were 1.86, 2.00, 0.88, and 0.90 eV, respectively, whereas the electrochemical band gaps were 1.99, 2.06, 1.00, and 1.06 eV, respectively. The reduced steric hindrance by the incorporation of the V or E linkage or the intramolecular charge transfer between the acceptor and the V or E linkage led to the small band gap. The AQ/ATP‐vinylene copolymers exhibited much higher vis/near infrared absorption intensity than the AQ/ATP‐ethynylene suggested the stronger π–π* transition intensity in the former and led to better charge‐transporting characteristics. The saturation field‐effect hole mobilities of the PATPV were 2.1 × 10?3, 1.7 × 10?2, and 1.1 × 10?2 cm2 V?1 s?1 on bare, octyltrichlorosilane (OTS)‐treated, and octadecyltrichlorosilane(ODTS)‐treated SiO2, respectively, with on‐off current ratios of 35, 6.02 × 102, and 7.56 × 102. On the other hand, the estimated field‐effect transistor hole mobility of the PATPE was in the range of 1.7 × 10?6–8.1 × 10?4 cm2 V?1 s?1, which was significantly smaller than those of the PATPV. The small band gaps and high charge carrier mobility of the prepared copolymers suggested their potential applications for near‐infrared electronic and optoelectronic devices. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 74–81, 2010  相似文献   

16.
Three novel poly(2,7‐carbazole)s having hole injection and transporting pendent moieties of carbazole and triphenylamine at the N‐position were synthesized for achieving pure blue electroluminescence. The N‐pendants in the polymers correspond to N‐phenylcarbazol‐2‐yl ( P1 ), N,N‐diphenylamino‐N‐phenylcarabazol‐2‐yl ( P2) , and 4‐phenyl having a hydrocarbon chain with a triphenylamine terminal ( P3 ), respectively. Electronic, optical, and electroluminescence properties of these polymers were compared with those of a poly(2,7‐carbazole) directly connected with triphenylamine at the N‐position ( P0 ) having an aggregation‐induced emissive property. The photoluminescence (PL) spectra suggested that they could emit in the region of blue light in the film state. Especially, P2 that has the fixed and large diphenylaminocarbazolyl pendant showed a deep‐blue fluorescence with CIE(x, y) = (0.15, 0.07). The P0 , P2 , and P3 based light emitting diode devices showed maximum electroluminescence wavelengths in the range of 430–450 nm. The P2 device showed pure blue emission (CIE[x, y] = [0.18, 0.16]), high luminance (1130 cd/m2) and current density (628 mA/cm2) at 8 V, whereas low‐energy emissions around 500–600 nm were emerged at higher than 9 V. The P0 and P3 devices also showed a blue electroluminescence in the range of 8–11 V, but their luminance and efficiency were low. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2526–2534  相似文献   

17.
Fluorescent hyperbranched copolymers (HB‐x, x = 1–4) with inherent tetraphenylthiophene, triphenylamine (TPA) and quinoline (Qu) moieties were prepared to study the influence of the TPA branching point on the thermal and the spectral stability. All the HB‐x copolymers exhibited high glass transition temperatures (Tgs = 245–315 °C) with the detected values increasing with the increasing branching TPA content in the HB‐x. The solid HB‐x films possess high emission efficiency with the resulting quantum yields (?Fs) in the ranges of 0.72–0.74. More importantly, the HB‐x copolymers and the derived light‐emitting devices exhibit high photoluminescence (PL) and electroluminescence (EL) stability towards thermal annealing at temperatures higher than 200 °C. After annealing at 200 °C (or 300 °C), no change was observed in the respective PL and EL spectra of HB‐1 (or HB‐4) copolymers. The spectral stability was found to correlate with Tg and with the highest branching density, HB‐4 copolymer possesses the highest thermal stability among all HB‐xs and show no EL spectral change after annealing at 300 °C for 4 h. The results indicate that all the branched HB‐x copolymers are promising candidates for the polymer light‐emitting diodes due to their high quantum yield and spectral stability. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
A series of novel aromatic polyarylates with triphenylamine units in the main chain and as the pendent group were prepared from the dicarboxylic acid monomer, N,N‐bis(4‐carboxyphenyl)‐N′, N′‐diphenyl‐1,4‐phenylenediamine (1), and various bisphenols. These polyarylates were amorphous and readily soluble in common organic solvents. They had excellent levels of thermal stability associated with moderately high Tg values (182–263 °C). These polymers exhibited strong UV–vis absorption bands at 357–360 nm in toluene solution and the photoluminescence spectra showed maximum bands around 493–503 nm in the green region. The hole‐transporting and electrochromic properties were examined by electrochemical and spectroelectrochemical methods. Cyclic voltammograms of the polyarylates exhibited two reversible oxidation redox couples in acetonitrile solution at Eonset 0.77–0.79 V and 1.12–1.14 V, respectively. The typical polymer 3b film revealed good stability of electrochromic characteristics, with color change from colorless to green and blue at applied potentials ranging from 0.00 to 1.24 V. These anodically polymeric electrochromic materials not only showed excellent reversible electrochromic stability with good green coloration efficiency (CE = 159 cm2/C) and blue coloration efficiency (CE = 154 cm2/C) but also exhibited high contrast of optical transmittance change (ΔT%), 54% in 895 nm for green color and up to 84% in 595 nm for blue color. After over 100 cyclic switches, the polymer films still exhibited excellent stability of electrochromic characteristics. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2004–2014, 2007  相似文献   

19.
Two new soluble alternating carbazolevinylene‐based polymers POXD and PTPA as well as the corresponding model compounds MOXD and MTPA were synthesized by Heck coupling. POXD and MOXD contained 2,5‐diphenyloxadiazole segments, while PTPA and MTPA contained triphenylamine segments. All samples displayed high thermal stability. The polymers had higher glass transition temperature (Tg) than their corresponding model compounds. The samples showed absorption maximum at 364–403 nm with optical band gap of 2.62–2.82 eV. They emitted blue‐green light with photoluminescence (PL) emission maximum at 450–501 nm and PL quantum yields in THF solution of 0.15–0.36. The absorption and the PL emission maxima of PTPA and MTPA were blue‐shifted as compared to those of POXD and MOXD . The electroluminescence (EL) spectra of multilayered devices made using four materials exhibited bluish green emissions, which is well consistent with PL spectra. The EL devices made using poly(vinyl carbazole) doped with MOXD and MTPA as emitting materials showed luminances of 12.1 and 4.8 cd m?2. POXD and PTPA exhibited 25.4, and 96.3 cd m?2, respectively. The polymer containing the corresponding molecules in the repeating group showed much higher device performances. Additionally, POXD and MOXD exhibited better stability of external quantum efficiency (EQE) and luminous efficiency with current density resulting from enhancing the electron transporting properties. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5592–5603, 2008  相似文献   

20.
Copolymers containing oligo(phenylene vinylene) (2.5), fluorene, and 4,4‐dihexyldithienosilole (DTS) units were synthesized and characterized. The π‐conjugated monomers were joined with the palladium(0)‐catalyzed Suzuki–Miyaura coupling reaction, thus forming either biphenyl– or phenyl–thiophene linkages. These polymers were photoluminescent, with the fluorescent quantum efficiency between 54 and 63% and with λmax for fluorescence at ~448 nm in tetrahydrofuran. The presence of 5% DTS in the copolymers had little influence on the optical absorption and emission wavelengths. Double‐layer light‐emitting‐diode devices using these polymers as emissive layers had low turn‐on voltages (3.5–4 V) and moderate external quantum efficiencies (0.14–0.30%). The results show that DTS plays a positive role in improving the charge‐injection characteristics of poly(phenylene vinylene) materials. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2048–2058  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号