首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oligoethylene‐end‐capped polylactides were synthesized through the ring‐opening polymerization of L ‐lactide with alcohol‐terminated oligoethylenes as macroinitiators. The polymerization of L ‐lactide was carried out in bulk at 130 °C in the presence of stannous octoate and primary alcohols with four different molecular weights: 350, 425, 550, and 700 g/mol. The end‐capped copolymers that formed had a number‐average molecular weight of approximately 40,000 (weight‐average molecular weight/number‐average molecular weight = 1.7) according to gel permeation chromatography and were highly crystalline in comparison with the similarly formed homopolymer of L ‐lactide. The copolymer structure was characterized by Fourier transform infrared, NMR, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, and differential scanning calorimetry analysis. This work focused on developing more crystallizable and hydrolytically stable polylactide derivatives that could potentially be used as compatibilizers in polylactide–polyolefin blends or as nucleating agents for poly(L ‐lactide) or other polyesters. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5257–5266, 2005  相似文献   

2.
A series of molecular‐weight‐controlled fluorinated aromatic polyimides were synthesized through the polycondensation of a fluorinated aromatic diamine, 1,4‐bis(4′‐amino‐2′‐trifluoromethylphenoxy)benzene, with 4,4′‐oxydiphthalic anhydride in the presence of phthalic anhydride as the molecular‐weight‐controlling and end‐capping agent. Experimental results demonstrated that the resulting polyimides could melt at temperatures of 250–300 °C to give high flowing molten fluids, which were suitable for melt molding to give strong and flexible polyimide sheets. Moreover, the aromatic polyimides also showed good solubility both in polar aprotic solvents and in common solvents. Polyimide solutions with solid concentrations higher than 25 wt % could be prepared with relatively low viscosity and were stable in storage at the ambient temperature. High‐quality polyimide films could be prepared via the casting of the polyimide solutions onto glass plates, followed by baking at a relatively low temperature. The molten behaviors and organosolubility of the molecular‐weight‐controlled aromatic polyimides depended significantly on the polymer molecular weights. Both the melt‐molded polyimide sheets and the solution‐cast polymer films exhibited outstanding combined mechanical and thermal properties. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1997–2006, 2006  相似文献   

3.
Low molecular weight (MW) polystyrenes were synthesized by radical polymerization in the presence of catalytic chain‐transfer agents. Synthetic conditions are controlled to produce molecules containing one methyl group at one end as well as a double bond at the other end, capped with a phenyl group. Individual oligomers were separated by liquid chromatography, and the properties were analyzed using NMR, ultraviolet–visible (UV–vis) spectroscopy, and size exclusion chromatography with light scattering. The UV–vis spectra, proton NMR spectra, and differential refractive‐index increments exhibit an MW dependence of up to six–eight monomer units. The obtained dependencies can be used for precise characterization of the molecular weight distribution of polystyrene obtained by catalytic chain transfer. The double‐bonded end groups were found to be exclusively in the transconfiguration for all oligomers. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1099–1105, 2001  相似文献   

4.
A new series of high‐performance poly(arylene phosphine oxide) (PAPO) materials were synthesized postpolymerization from fluorinated poly(arylene phosphine oxide) (f‐PAPO). The new materials had increased solubility and film‐forming ability over the parent f‐PAPO. With the careful choice of the nucleophile, the thermal stability was also increased. The parent polymer f‐PAPO was synthesized via Ni(0) coupling from aromatic chloride and mesylate monomers. Both monomers were polymerized successfully to create polymers with intrinsic viscosities of 0.235 and 0.123 dL/g, respectively. The higher molecular weight f‐PAPO gave a glass transition of 320 °C and a char yield of 54% at 650 °C in air. The substitution of f‐PAPO via nucleophilic aromatic substitution produced PAPO thermoplastics with significant changes in the properties. The largest increase in the thermal stability relative to f‐PAPO was from 563 to 600 °C 10% weight‐loss values in nitrogen after the displacement of fluoride by 4‐aminophenol, which yielded poly[4‐(4‐aminopheonxyphenyl)bis(4′‐phenyl)phosphine oxide]. Additionally, the char yield increased from 54 to 71% in air at 650 °C. The solubility of the parent polymer was improved after substitution with 3‐tert‐butylphenol, n‐nonylamine, and poly(ethylene glycol)monomethyl ether. All of these became soluble in chloroform, N,N‐dimethylacetamide, and dimethyl sulfoxide. Copolymers were synthesized with 2,5‐dichloro‐4′‐fluorobenzophenone to improve the solubility of f‐PAPO without the loss of thermal stability. These copolymers also underwent nucleophilic aromatic substitution to create an epoxy cure agent that was used with the DEN 431 resin. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2277–2287, 2003  相似文献   

5.
Polyarylates have previously been synthesized from acetate esters via esterolysis (loss of methyl acetate). This polycondensation can be extended to p‐substituted aromatic monomers for liquid crystal polyesters (LCPs). For AB‐type polymers, methyl p‐acetoxybenzoate and methyl 6‐acetoxynaphthoate were copolymerized to an LCP with reasonable molecular weights. Benzoate esters, methyl 4‐benzoyloxybenzoate (MBB) and methyl 6‐benzoyloxy‐2‐naphthoate (MBN), are also investigated. Several tin and antimony oxide catalysts were effective. The rate of esterolysis polymerization of MBB and MBN is slower than that of the corresponding acidolysis melt polymerization, but fast enough to give relatively high‐molecular‐weight polymers and similar thermal stability as commercial LCP prepared by acidolysis. Using these alternative benzoyloxy groups significantly reduced the color problem, because ketene loss cannot occur. Esterolysis melt polymerizations leading to AB/AABB‐type LCPs were performed using either dimethyl 2,6‐naphthalene dicarboxylate (DMND) or dimethyl terephthalate (DMT) with methyl 4‐acetoxybenzoate and phenylhydroquinone diacetate with tin and antimony catalysts. DMT‐based monomer compositions show much faster polymerization than DMND‐based compositions using antimony oxide catalyst. All these LCPs show a Tg in the 140–170 °C range as a result of the inclusion of the naphthalene and/or phenyl hydroquinone units in the polymer chain. Compositions completely off‐balanced on either side still lead to relatively high‐molecular‐weight copolyesters because either excess monomer can be removed during polymerization. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3586–3595, 2000  相似文献   

6.
In this work, cupric oxide (CuO) or cuprous oxide (Cu2O) was used as the catalyst for the single electron transfer‐reversible addition‐fragmentation chain transfer (SET‐RAFT) polymerization of methyl methacrylate in the presence of ascorbic acid at 25 °C. 2‐Cyanoprop‐2‐yl‐1‐dithionaphthalate (CPDN) was used as the RAFT agent. The polymerization occurred smoothly after an induction period arising from the slow activation of CuO (or Cu2O) and the “initialization” process in RAFT polymerization. The polymerizations conveyed features of “living”/controlled radical polymerizations: linear evolution of number‐average molecular weight with monomer conversion, narrow molecular weight distribution, and high retention of chain end fidelity. From the polymerization profile, it was deduced that the polymerization proceeded via a conjunct mechanism of single electron transfer‐living radical polymerization (SET‐LRP) and RAFT polymerization, wherein CPDN acting as the initiator for SET‐LRP and chain transfer agent for RAFT polymerization. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
A series of novel vanadium(III) complexes bearing tridentate phenoxy‐phosphine [O,P,O] ligands and phosphine oxide‐bridged bisphenolato [O,P?O,O] ligands, which differ in the steric and electronic properties, have been synthesized and characterized. These complexes were characterized by Fourier transform infrared spectroscopy (FTIR) and mass spectra as well as elemental analysis. Single‐crystal X‐ray diffraction revealed that complexes 3c and 4e adopt an octahedral geometry around the vanadium center. In the presence of Et2AlCl as a cocatalyst, these complexes displayed high catalytic activities up to 22.8 kg PE/mmolV.h.bar for ethylene polymerization, and produced high‐molecular‐weight polymers. Introducing additional oxygen atom on phosphorus atom of [O,P,O] ligands has resulted in significant changes on the aspect of steric/electronic effect, which has an impact on polymerization performance. 3c and 4c /Et2AlCl catalytic systems were tolerant to elevated temperature (70 °C) and yielded unimodal polyethylenes, indicating the single‐site behavior of these catalysts. By pretreating with equimolar amounts of alkylaluminums, functional α‐olefin 10‐undecen‐1‐ol can be efficiently incorporated into polyethylene chains. 10‐Undecen‐1‐ol incorporation can easily reach 14.6 mol % under the mild conditions. Other reaction parameters that influenced the polymerization behavior, such as reaction temperature, Al/V (molar ratio), and comonomer concentration, are also examined in detail. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

8.
We have synthesized and characterized a new family of low melting all‐aromatic ester‐based liquid crystal oligomers end‐capped with reactive phenylethynyl end groups. In a consecutive, high‐temperature step, the reactive end groups were thermally activated and polymerization was initiated. This reactive oligomer approach allows us to synthesize liquid crystal thermosets with outstanding mechanical and thermal properties, which are superior to well‐known high‐performance polymers such as PPS and PEEK. We have modified an intractable LC formulation based on hydroquinone and terephthalic acid, with Mn = 1000, 5000, and 9000 g mol?1, and varied the backbone composition using isophthalic acid, resorcinol, 4‐hydroxy‐benzoic acid, 6‐hydroxy‐2‐naphthoic acid, and chlorohydroquinone. All fully cured polymers showed glass transition temperatures in the range of 164–275 °C, and high storage moduli at room temperature (~ 5 GPa) and elevated temperature (~ 2 GPa at 200 °C). All oligomers display nematic mesophases and in most cases, the nematic order is maintained after cure. Rheology experiments showed that the phenylethynyl end group undergoes predominantly chain extension below 340 °C and crosslinking above this temperature. Highly aligned fibers could be spun from the nematic melt, and we found that the order parameter 〈P2〉 was not affected by the chain extension and crosslink chemistry. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1368–1380, 2009  相似文献   

9.
Rigid‐rod poly(4′‐methyl‐2,5‐benzophenone) macromonomers were synthesized by Ni(0) catalytic coupling of 2,5‐dichloro‐4′‐methylbenzophenone and end‐capping agent 4‐chloro‐4′‐fluorobenzophenone. The macromonomers produced were labile to nucleophilic aromatic substitution. The molecular weight of poly(4′‐methyl‐2,5‐benzophenone) was controlled by varying the amount of the end‐capping agent in the reaction mixture. Glass‐transition temperatures of the macromonomers increased with increasing molecular weight and ranged from 117 to 213 °C. Substitution of the macromonomer end groups was determined to be nearly quantitative by 1H NMR and gel permeation chromatography. The polymerization of a poly(4′‐methyl‐2,5‐benzophenone) macromonomer [number‐average molecular weight (Mn) = 1.90 × 103 g/mol; polydispersity (Mw)/Mn = 2.04] with hydroxy end‐capped bisphenol A polyaryletherketone (Mn = 4.50 × 103 g/mol; Mw/Mn = 1.92) afforded an alternating multiblock copolymer (Mn = 1.95 × 104 g/mol; Mw/Mn = 6.02) that formed flexible, transparent films that could be creased without cracking. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3505–3512, 2001  相似文献   

10.
The anionic polymerization of derivatives of 4‐phenyl‐1‐buten‐3‐yne was carried out to investigate the effect of substituents on the polymerization behavior. The polymerization of 4‐(4‐fluorophenyl)‐1‐buten‐3‐yne and 4‐(2‐fluorophenyl)‐1‐buten‐3‐yne in tetrahydrofuran at −78 °C with n‐BuLi/sparteine as an initiator gave polymers consisting of 1,2‐ and 1,4‐polymerized units in quantitative yields with ratios of 80/20 and 88/12, respectively. The molecular weights of the polymers were controlled by the ratio of the monomers to n‐BuLi, and the distribution was relatively narrow (weight‐average molecular weight/number‐average molecular weight < 1.2), supporting the living nature of the polymerization. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1016–1023, 2001  相似文献   

11.
A novel diamine, bis‐(3‐aminophenyl)‐4‐(trifluoromethyl)phenyl phosphine oxide (mDA3FPPO), containing phosphine oxide and fluorine moieties was prepared via the Grignard reaction from an intermediate, 4‐(trifluoromethyl)phenyl diphenyl phosphine oxide, that was synthesized from diphenylphosphinic chloride and 4‐(trifluoromethyl)bromobenzene, followed by nitration and reduction. The monomer was characterized by Fourier transform infrared (FTIR), 1H NMR, 31P NMR, 19F NMR spectroscopies; elemental analysis; melting point measurements; and titration and was used to prepare polyimides with a number of dianhydrides such as pyromellitic dianhydride (PMDA), 5,5′‐[2,2,2‐trifluoro‐1‐(trifluoromethyl)ethyliden]‐bis‐1,3‐isobenzofuranedione (6FDA), 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA), and 4,4′‐oxydiphthalic dianhydride (ODPA). Polyimides were synthesized via a conventional two‐step route; preparation of polyamic acids, followed by solution imidization, and the molecular weight were controlled to 20,000 g/mol. Resulting polyimides were characterized by FTIR, NMR, DSC, and intrinsic viscosity measurements. Refractive‐index, dielectric constant, and adhesive properties were also determined. The properties of polyimides were compared with those of polyimides prepared from 1,1‐bis‐(4‐aminophenyl)‐1‐phenyl‐2,2,2‐trifluoroethane (3FDAm) and bis‐(3‐aminophenyl) phenyl phosphine oxide (mDAPPO). The polyimides prepared from mDA3FPPO provided high glass‐transition temperatures (248–311 °C), good thermal stability, excellent solubility, low birefringence (0.0030–0.0036), low dielectric constants (2.9–3.1), and excellent adhesive properties with Cu foils (107 g/mm). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3335–3347, 2001  相似文献   

12.
Novel AB2‐type monomers such as 3,5‐bis(4‐methylolphenoxy)benzoic acid ( monomer 1 ), methyl 3,5‐bis(4‐methylolphenoxy) benzoate ( monomer 2 ), and 3,5‐bis(4‐methylolphenoxy)benzoyl chloride ( monomer 3 ) were synthesized. Solution polymerization and melt self‐polycondensation of these monomers yielded hydroxyl‐terminated hyperbranched aromatic poly(ether‐ester)s. The structure of these polymers was established using FTIR and 1H NMR spectroscopy. The molecular weights (Mw) of the polymers were found to vary from 2.0 × 103 to 1.49 × 104 depending on the polymerization techniques and the experimental conditions used. Suitable model compounds that mimic exactly the dendritic, linear, and terminal units present in the hyperbranched polymer were synthesized for the calculation of degree of branching (DB) and the values ranged from 52 to 93%. The thermal stability of the polymers was evaluated by thermogravimetric analysis, which showed no virtual weight loss up to 200 °C. The inherent viscosities of the polymers in DMF ranged from 0.010 to 0.120 dL/g. End‐group modification of the hyperbranched polymer was carried out with phenyl isocyanate, 4‐(decyloxy)benzoic acid and methyl red dye. The end‐capping groups were found to change the thermal properties of the polymers such as Tg. The optical properties of hyperbranched polymer and the dye‐capped hyperbranched polymer were investigated using ultraviolet‐absorption and fluorescence spectroscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5414–5430, 2008  相似文献   

13.
Four different xanthates containing either phosphonate or bisphosphonate moieties were synthesized with high degree of purity. These xanthates were used as chain transfer agents (CTA) in the RAFT/MADIX polymerization of vinyl acetate (VAc) to prepare end‐capped poly(VAc). The rate of VAc polymerization in the presence of these new CTAs was shown to be similar to that obtained with conventional xanthate, that is, (methyl ethoxycarbonothioyl) sulfanyl acetate. Good control of VAc polymerization was also obtained since the molecular weight increased linearly with monomer conversion for each phosphonate‐containing xanthate. Low‐PDI values were obtained, ascribed to efficient exchange during RAFT/MADIX polymerization. Cex value was therefore calculated to about 25, based on RAFT/MADIX of VAc in the presence of rhodixan A1/VAc adduct. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
Well‐defined diblock and triblock copolymers composed of poly(N‐isopropylacrylamide) (PNIPAM) and poly(ethylene oxide) (PEO) were successfully synthesized through the reversible addition–fragmentation chain transfer polymerization of N‐isopropylacrylamide (NIPAM) with PEO capped with one or two dithiobenzoyl groups as a macrotransfer agent. 1H NMR, Fourier transform infrared, and gel permeation chromatography instruments were used to characterize the block copolymers obtained. The results showed that the diblock and triblock copolymers had well‐defined structures and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight < 1.2), and the molecular weight of the PNIPAM block in the diblock and triblock copolymers could be controlled by the initial molar ratio of NIPAM to dithiobenzoate‐terminated PEO and the NIPAM conversion. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4873–4881, 2004  相似文献   

15.
The homopolyester of 4‐hydroxyphenylacetic acid (HPAA) was synthesized by one‐pot, slurry‐melt, and acidolysis melt polymerization techniques and was characterized by its inherent viscosity and IR and NMR spectra. Differential scanning calorimetry (DSC), polarizing light microscopy (PLM), and wide‐angle X‐ray diffraction (WAXD) studies of the homopolymer were carried out for its thermal and phase behavior. The results indicated that the yield and molecular weight of the polymer depended on the method of preparation; moreover, the acidolysis melt polymerization of the pure acetoxy derivative of HPAA was the best method for the preparation of high molecular weight poly(4‐oxyphenylacetate) (polyHPAA) without side reactions. DSC and PLM studies also showed that the thermal and optical properties depended largely on the polymerization conditions and inherent viscosity values. PolyHPAA did not show a clear texture typical of liquid‐crystalline polymers, whereas after cooling from the melt, structures similar to spherulitic crystals were observed. WAXD patterns showed a crystalline nature. The in vitro degradability of the polymer was also studied via the water absorption in buffer solutions of pH 7 and 10 at 30 and 60 °C; this was followed by Fourier transform infrared, inherent viscosity, DSC, thermogravimetric analysis, WAXD, and scanning electron microscopy techniques. Unlike Vectra®, which showed no degradation, polyHPAA showed an increase in hydrolytic degradation from 5.0 and 6.0% at 30 °C to 12.5 and 15.0% at 60 °C after 350 h in buffer solutions of pH 7 and 10, respectively. The results indicated a possible biomedical prosthetic application of poly(oxyphenylalkanoate)s such as polyHPAA with better crystallinity coupled with degradability as a substitute for poly(hydroxyalkanoates). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2430–2443, 2001  相似文献   

16.
The tert‐butyllithium (t‐BuLi) initiated polymerization of carefully purified 2‐vinylnaphthalene in toluene containing small amounts of tetrahydrofuran with respect to t‐BuLi proceeds on a timescale of several hours without significant deactivation and allows the synthesis of very narrow molecular weight distribution poly‐(2‐vinylnaphthalene) (P2VN) (polydispersities as low as 1.04) and molecular weights between 1000 and 20,000. The absence of P2VN‐Li deactivation at these conditions is also indicated by high degrees of trimethylsilyl end functionalization (>95%) and coupling with dibromoxylene. The respective polymerizations of conventionally purified monomer reveal a complex polymerization profile consistent with deactivation by 2‐acetylnaphthalene during the early stages of the reaction. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3034–3041, 2001  相似文献   

17.
To prepare ultrahigh molecular weight (UHMW) poly(N‐vinylcarbazole) (PVCZ) with a high conversion, I heterogeneous‐solution‐polymerized N‐vinylcarbazole (VCZ) in methanol/tertiary butyl alcohol (TBA) at 25, 35, and 45 °C with a low‐temperature initiator, 2,2′‐azobis(2,4‐dimethylvaleronitrile) (ADMVN), and I investigated the effects of the polymerization conditions on the polymerization behavior and molecular parameters of PVCZ. A low‐polymerization temperature with ADMVN, a heterogeneous system with methanol, and a low chain transfer with TBA proved to be successful in obtaining PVCZ of UHMW [weight‐average molecular weight (Mw) > 3,000,000] and high conversion (>80%) with a smaller temperature rise during polymerization but still of free‐radical polymerization by an azoinitiator. The polymerization rate of VCZ in methanol/TBA at 25 °C was proportional to the 0.97 power of the ADMVN concentration, indicating a heterogeneous nature for the polymerization. The molecular weight was higher and the molecular weight distribution was narrower with PVCZ polymerized at lower temperatures. For PVCZ produced in methanol/TBA at 25 °C with an ADMVN concentration of 0.0001 mol/mol of VCZ, an Mw of 3,230,000 was obtained, with a polydispersity index of 2.4. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 539–545, 2001  相似文献   

18.
To obtain a melt‐processable thermosetting polyimide having a high glass‐transition temperature (Tg) and good solvent resistance, the effect of introducing a crosslinkable agent into the polymer chain ends of the melt‐processable polyimide on its physical properties was studied. The polyimide (calculated number‐average molecular weight (Mn) = 11,600 g/mol) capped with the crosslinkable agent exhibited poor melt flowability because its crosslinkable agent reacted at the processing temperature of 360 °C. To reduce the rate of crosslink reaction, two methods were investigated. One was lowering the processing temperature, and the other was decreasing the amount of crosslinkable agent. The low‐molecular‐weight oligomer (calculated Mn = 6300 g/mol) capped with the crosslinkable agent exhibited good melt flowability at the lower processing temperature of 340 °C where the crosslinkable agent did not react. However, the obtained molded part of this oligomer was too brittle to maintain its shape. However, the polyimide (calculated Mn = 11,600 g/mol) partially capped with the crosslinkable agent demonstrated good melt flowability at the processing temperature of 360 °C. Furthermore, the molded part of this resin was strong and tough. In addition, the cured part exhibited high Tg and good solvent resistance. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2395–2404, 2004  相似文献   

19.
Detailed GC analysis of oligomers formed in ethylene homopolymerization reactions, ethylene/1‐hexene copolymerization reactions, and homo‐oligomerization reactions of 1‐hexene and 1‐octene in the presence of a chromium oxide and an organochromium catalyst is carried out. A combination of these data with the analysis of 13C NMR and IR spectra of the respective high molecular weight polymerization products indicates that the standard olefin polymerization mechanism, according to which the starting chain end of each polymer molecule is saturated and the terminal chain end is a C?C bond (in the absence of hydrogen in the polymerization reactions), is also applicable to olefin polymerization reactions with both types of chromium‐based catalysts. The mechanism of active center formation and polymerization is proposed for the reactions. Two additional features of the polymerization reactions, co‐trimerization of olefins over chromium oxide catalysts and formation of methyl branches in polyethylene chains in the presence of organochromium catalysts, also find confirmation in the GC analysis. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5330–5347, 2008  相似文献   

20.
We reported a new way to synthesize single‐chain white light‐emitting polyfluorene (WPF) with an increased molecular weight using azide‐alkyne click reaction. Four basic polymers with specific end‐capping, which exhibited high‐glass transition temperatures (Tg > 100 °C) and excellent thermal stability, were used as foundations of the WPF's synthesis; a blue‐light polymer (PFB2) end‐capped with azide groups can easily react with acetylene end‐capped polymers (PFB1, PFG1, and PFR1, which are emitting blue‐, green‐ and red‐light, respectively) to form triazole‐ring linkages in polar solvents such as N,N‐dimethylforamide/toluene co‐solvent at moderate temperature of 100 °C, even without metal‐catalyst. Several WPFs that consist of these four basic polymers in certain ratios were derived, and the polymer light‐emitting diode device based on the high‐molecular weight WPF was achieved and demonstrated a maximum brightness of 7551 cd/m2 (at 12.5 V) and a maximum yield of 5.5 cd/A with Commission Internationale de l'Eclairage coordinates of (0.30, 0.33) using fine‐tuned WPF5 as emitting material. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号