首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of the dibutyltin dilaurate (DBTDL)‐catalyzed urethane formation reactions of cyclohexyl isocyanate (CHI) with model monofunctional fluorinated alcohols and fluoropolyether diol Z‐DOL H‐1000 of various molecular weights (100–1084 g mol?1) in different solvents were studied. IR spectroscopy and chemical titration methods were used for measuring the rate of the total NCO disappearance at 30–60 °C. The effects of the reagents and DBTDL catalyst concentrations, the solvent and hydroxyl‐containing compound nature, and the temperature on the reaction rate and mechanism were investigated. Depending on the initial reagent concentration and solvent, the reactions could be well described by zero‐order, first‐order, second‐order, or more complex equations. The reaction mechanism, including the formation of intermediate ternary or binary complexes of reagents with the tin catalyst, could vary with the concentration and solvent and even during the reaction. The results were treated with a rate expression analogous to those used for enzymatic reactions. Under the explored conditions, the rate of the uncatalyzed reaction of fluorinated alcohols with CHI was negligible. Moreover, there was no allophanate formation, nor were there other side reactions, catalysis by urethane in the absence of DBTDL, or a synergetic effect in the presence of the tin catalyst. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3771–3795, 2002  相似文献   

2.
A comparative kinetic study of the dibutyltin dilaurate (DBTDL) and 1,4‐diazabicyclo[2,2,2]octane (DABCO) catalyzed reactions of α,ω‐bis(hydroxy)‐terminated fluoropolyethers (FPEs)—Z‐DOLs and Z‐DOL TXs—of various molecular weights and purity, with 4,4′‐dicyclohexylmethane diisocyanate (H12MDI), isophorone diisocyanate (IPDI) and 2,4‐toluene diisocyanate (TDI) was carried out in different solvents. An analytical method was used to follow the kinetics of the reactions at four different temperatures. The rate of NCO disappearance measured by two independent methods—IR spectroscopy and chemical titration were found to be very close. Straight proportionality between rate constants kcat and catalyst concentration was found. But in some cases for the DBTDL catalyzed reactions effect of catalyst saturation along with appearance of the limiting DBTDL concentration Clim below which the rate of reaction was close to zero were observed. Reactivity of Z‐DOLs in the tin‐catalyzed urethane reactions was found to decrease with their storage time at RT due to the slow hydrolysis of the end  COOR groups impurities, which give the corresponding acids that act as a strong inhibitor of the DBTDL activity. These acid admixtures have no influence on the DABCO catalyzed reactions. For the DBTDL and DABCO catalyzed reactions of Z‐DOLs with IPDI the dependence of effective rate constants keff (where keff = kcat · 0.01/[DBTDL] and catalyst concentration is taken in mol % based on IPDI) on total reagents concentration were found to be described by curves with a maximum. Critical reagents concentration, after which the relationship keff = f (C) changes from proportional to inverse proportional, seems do not substantially depend on the solvent nature. Hydrogenated analog poly(ethylene glycol) MW 400 (PEG‐400) differs greatly from Z‐DOLs: only steady decrease of keff was observed with increase of reagents concentration C from 5 up to 95 wt %. Activation energies for all the studied reactions are within the range of 10.8–16.7 kcal/mol. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2579–2602, 2000  相似文献   

3.
The kinetics of the hydrogen getter 1,4‐bis(phenylethynyl)benzene (DEB) blended with carbon‐supported Pd (DEB‐Pd/C) dispersed uniformly in silicone [DEB‐Pd/C‐poly(dimethyl siloxane)] were studied with a thermogravimetric method as a function of the hydrogen pressure and temperature. A diffusion‐controlled reaction model was developed to explain the experimental results. The diffusion coefficient, solubility coefficient, and permeability of hydrogen through silicone rubber were determined. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 425–431, 2001  相似文献   

4.
A versatile approach to the synthesis of novel polyamidoamine (PAMAM) side‐chain dendritic polyester (SCDPE) possessing azobenzene motifs in the polymeric core is described and displayed reversible cis–trans (E/Z) isomerization upon exposure to UV light. A polymerization reaction was conducted in solution using ester‐terminated PAMAM dendritic diol ( 1a , G 3.5) and azobenzene dicarboxylic acid chloride in the presence of triethylamine. PAMAM dendritic diol 1a as well as SCDPE ( 1 ) were thoroughly characterized by means of IR and NMR (1H and 13C) spectroscopies. The intrinsic viscosity of 1 at 36 °C in CHCl3 was found to be 0.38 dl/g. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4182–4188, 2001  相似文献   

5.
The synthesis and properties of a class of soluble fluorine‐containing aromatic polyimides are described. Substituents of trifluoromethyl groups on the aromatic rings of paralinked aromatic ether diamine conferred the polymer prepared thereof with enhanced solubility, low‐moisture absorption, and low dielectric constants. The polyimides also exhibited exceptional thermal stability, good mechanical properties, and excellent hygrothermal resistance. These outstanding combined features ensure the polymers are desirable candidate materials for advanced microelectronics applications. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2581–2590, 2001  相似文献   

6.
A new aromatic sulfone ether diamine was synthesized by nucleophilic aromatic substitution reaction of 5‐amino‐1‐naphthol with bis(4‐chlorophenyl) sulfone in the presence of potassium carbonate in a polar aprotic solvent. Polycondensation reactions of the obtained diamine with pyromellitic dianhydride (PMDA), benzophenonetetracarboxylic dianhydride (BTDA), and hexafluoroisopropylidene diphthalic anhydride (6FDA) resulted in preparation of thermally stable poly(sulfone ether imide)s. Poly(sulfone ether amide)s also were prepared by reaction of the diamine with terephthaloyl chloride (TPC) and isophthaloyl chloride (IPC). The prepared monomer and polymers were characterized by conventional methods. Physical and mechanical properties of polymers, including thermal stability, thermal behavior, solution viscosity, solubility behavior, and modulus, also were studied. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1487–1492, 2000  相似文献   

7.
Well‐defined linear furan‐protected maleimide‐terminated poly(ethylene glycol) (PEG‐MI), tetramethylpiperidine‐1‐oxyl‐terminated poly(ε‐caprolactone) (PCL‐TEMPO), and azide‐terminated polystyrene (PS‐N3) or ‐poly(N‐butyl oxanorbornene imide) (PONB‐N3) were ligated to an orthogonally functionalized core ( 1 ) in a two‐step reaction mode through triple click reactions. In a first step, Diels–Alder click reaction of PEG‐MI with 1 was performed in toluene at 110 °C for 24 h to afford α‐alkyne‐α‐bromide‐terminated PEG (PEG‐alkyne/Br). As a second step, this precursor was subsequently ligated with the PCL‐TEMPO and PS‐N3 or PONB‐N3 in N,N‐dimethylformamide at room temperature for 12 h catalyzed by Cu(0)/Cu(I) through copper‐catalyzed azide‐alkyne cycloaddition and nitroxide radical coupling click reactions, yield resulting ABC miktoarm star polymers in a one‐pot mode. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
The effect of catalyst dibutyltin dilaurate (DBTDL) on the kinetics of urethane formation reactions of α,ω‐bis(hydroxy)‐terminated fluoropolyethers Fomblin® Z‐DOL TXs (FPEs) of various molecular weights and poly(oxyethylene) glycol PEG‐400 with isophorone diisocyanate (IPDI) in hexafluoroxylene (HFX) and tetrahydrofuran (THF) at 40 °C and NCO:OH = 2:1 have been studied in a broad range of catalyst (0.10–9.00) ×10?4 M and total reagents (10.0–60.1 wt %) concentrations. The rate of tin‐catalyzed second‐order reactions (with respect to diol and diisocyanate) was found to be proportional to the square root of catalyst concentration [DBTDL]0.5 both in low polar (HFX) and polar (THF) solvents. Effect of catalyst saturation was revealed for all the reaction systems at higher DBTDL concentrations as well as the appearance of the limiting catalyst concentrations Clim below which the rates of reaction were close to zero. Based on these findings new effective rate coefficients have been derived k = kcat/(C ? C) that are independent of the total reagent concentration in the range of 10.0–60.1 wt % ([OH] = 0.10–0.91 equiv/L). This new approach highlights that the rate of the tin‐catalyzed urethane formation reactions of α,ω‐bis(hydroxy)‐terminated fluoropolyethers Z‐DOL TXs with IPDI in HFX at 40 °C and NCO:OH = 2:1 increases significantly with increasing MW of FPE from 776 up to 3405. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5354–5371, 2004  相似文献   

9.
The synthesis of hybrid star‐shaped polymers was carried out by atom transfer radical polymerization of n‐butyl acrylate from a well‐defined multifunctional titanium‐oxo‐cluster initiator. Conditions were identified to prevent possible side reactions among monomer, polymer, and the titanium‐oxo‐cluster ligands. Polymerizations provided linear first‐order kinetics and the evolution of the experimental molecular weight is also linear with the conversion. 1H DOSY NMR and cleavage of the polymeric branches from the multifunctional initiator by hydrolysis were used to (i) prove the star‐shaped structure of the polymer, and (ii) demonstrate that the shoulder observed on size exclusion chromatograms is not due to a noncontrolled polymerization but to ungrafting of polymeric branches during analysis. Rheological properties of the hybrid star‐shaped poly(n‐butyl acrylate) were studied in the linear regime and show that the Ti‐oxo‐cluster not only increases significantly the viscosity of the polymer relative to its ungrafted arm but has a rheological signature which is qualitatively different from that of stars with organic cores suggesting that the Ti cluster reduces significantly the molecular mobility of the star. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
In the present study, a new (E)‐rich‐enyne π‐conjugated polymer containing a carbazole was designed and synthesized. Two different synthesis methods of poly[N‐(2‐ethylhexyl)‐3,6‐carbazolyleneethynylene‐(E)‐vinylene] (PCZEV) have been prepared from 3,6‐diethynyl‐9(2‐ethylhexyl)carbazole by using the palladium‐carbene‐catalyzed reaction and/or by using the organolanthanide‐catalyzed reaction leading to well‐defined polymer, and their general properties were studied. Compared to poly[N‐(2‐ethylhexyl)‐3,6‐carbazolyleneethynylene] (PCE), the UV‐vis absorption and photoluminescence of the PCZEV was red‐shifted, which indicates the extension of conjugation length. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2434–2442, 2009  相似文献   

11.
Combined analysis of experimental data on monomer diffusion, phase equilibrium, and copolymerization kinetics in systems of monomers (nonyl acrylate and 2‐methyl‐5‐vinyltetrazole) as well as their copolymers and homopolymers was carried out. The composition of the mixture in the vicinity of the growing macroradical can differ significantly from the average composition in the whole reactor volume because of consumption of the more‐reactive reactant 2‐methyl‐5‐vinyltetrazole. Nonyl acrylate exhibited limited compatibility with copolymers enriched in 2‐methyl‐5‐vinyltetrazole and its homopolymer. Phase diagrams were obtained for the latter homopolymer. The concentration plots of the diffusion coefficients of both monomers in their copolymers of various compositions were determined. Microphase separation was observed at specific conversions in the reaction system where the composition of a copolymer and its concentration in a monomer solution approached the binodal of the phase diagram. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1383–1389, 2002  相似文献   

12.
Novel polyurethanes consisting of polyisobutylene (PIB)/poly(tetramethylene oxide) (PTMO) or PIB/poly(hexamethylene carbonate) (PC) soft co‐segments in combination with 4,4′‐methylene‐bis(cyclohexyl isocyanate)/1,6‐hexanediol, 1,4‐butanediol, or 1,6‐hexamethylene diamine hard segments exhibit excellent mechanical properties (upto 31 MPa tensile strength with 700% elongation) together with unprecedented oxidative/hydrolytic stability. A structural model of the morphology of these polyurethanes was developed that reflects this combination of properties. The key new elements of our model are H bridges between the PTMO and PC type soft and urethane hard segments, which compatibilize the soft and hard domains, and the presence of large quantities of chemically resistant PIB soft segments that protect the other oxidatively/hydrolytically vulnerable constituents. A variety of FTIR, DSC, SAXS, AFM, and DMTA experiments strongly support the proposed morphological model. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6180–6190, 2009  相似文献   

13.
A bulk step‐growth polymerization of multifunctional azides and alkynes through the copper (I)‐catalyzed azide‐alkyne cycloaddition (CuAAC) reaction is described. The polymerization kinetics of two systems containing different diynes, bisphenol E diyne (BE‐diyne)/bisphenol A bisazide (BA‐bisazide) and tetraethylene glycol diyne (TeEG‐diyne)/BA‐bisazide, are evaluated by differential scanning calorimetry (DSC), shear rheology, and thermogravimetric analysis. The effects of catalyst concentration on reaction kinetics are investigated in detail, as are the thermal properties (glass transition and decomposition temperatures) of the formed polymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4093–4102, 2010  相似文献   

14.
Crosslinking copolymerization of butyl methacrylate with a small amount of divinylbenzene (DVB) was carried out using single‐electron transfer‐living radical polymerization initiated with carbon tetrachloride (CCl4) and catalyzed by Cu(0)/N‐ligand in N,N‐dimethylformamide to produce a highly oil‐absorbing gel. The polymerization, gelation process, and oil‐absorbing properties were studied in detail. Analysis of monomer conversion with reaction time showed that the polymerization followed first‐order kinetics for both linear and crosslinking polymerization before gelation. Higher levels of DVB led to earlier gelation and the influence of N‐ligand on gelation was also significant. Under optimal conditions, oil absorption of the prepared gel to chloroform could reach 42.1 g·g?1. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3233–3239  相似文献   

15.
Functionalization of polyols with aromatic amines offers a potential route to modify properties of polyurethanes, polyamides, and epoxies. Additionally, aniline termination of polyether backbones provides the opportunity to speed up reactions with isocyanates relative to hydroxyl functionalization and slow down epoxy reactions compared to reactions with primary and secondary amines. In this article, the synthesis, characterization, and physical properties of aniline‐terminated polyols with varying molecular weight, monomer type, and functionality is described. Numerous analytical techniques are employed to track the chemical modification kinetics and the resulting aniline functionalized polyol properties. In addition, synthesis and properties of poly(urethane‐urea) elastomers from several of the modified polyols are presented. The effect of hard segment composition and process temperature on tensile properties, dynamic mechanical properties, phase morphology, and chemical resistance is explored. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1730–1742  相似文献   

16.
A novel high oil‐absorbing crosslinked gel was synthesized by copolymerization of butyl methacrylate (BMA) with a small amount of pentaerythritol triacrylate (PETA) crosslinker using single electron transfer‐living radical polymerization (SET–LRP) initiated with carbon tetrachloride (CCl4) and catalyzed by Cu(0)/hexamethylenetetramine (HMTA) in N, N‐dimethylformamide (DMF). The polymerization followed first‐order kinetics as indicated by linear increase of monomer concentration with reaction time. Effects of reaction temperature, crosslinker, initiator, and catalyst on the oil‐absorbing properties of the crosslinked gel were investigated in detail. The oil absorptions of the crosslinked gel to chloroform, toluene could reach 51.9, 34.5 g/g, respectively. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
We report here a simple and universal synthetic pathway covering triple click reactions, Diels–Alder, copper‐catalyzed azide–alkyne cycloaddition (CuAAC), and nitroxide radical coupling (NRC), to prepare well‐defined graft copolymers with V‐shaped side chains. The Diels–Alder click reaction between the furan protected‐maleimide‐terminated poly(ethylene glycol) (PEG) and a trifunctional core ( 1 ) carrying an anthracene, alkyne, and bromide was carried out to yield the corresponding α‐alkyne‐ and α‐bromide‐terminated PEG (PEG‐alkyne/Br) in toluene at 110 °C. Subsequently, the polystyrene or polyoxanorbornene with pendant azide functionality as a main backbone is reacted with the PEG‐alkyne/Br and 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO)‐terminated poly(ε‐caprolactone) using the CuAAC and NRC reactions in a one‐pot fashion in N,N′‐dimethylformamide at room temperature to result in the target V‐shaped graft copolymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4667–4674  相似文献   

18.
“Click” chemistry is an effective and commonly used technique in polymer chemistry for the synthesis and modification of polymers. In this study, the bulk polymerization of multifunctional alkynes and azides was achieved by the copper(I)‐catalyzed alkyne–azide 1,3‐dipolar cycloaddition. The influence of different catalyst systems on the polymerization kinetics of the “click”reaction were evaluated by differential scanning calorimetry. Surprisingly, Cu(I) acetate showed the most efficient catalytic behavior among the applied Cu(I) salts. The polymerization kinetics in solution were investigated by 1H NMR spectroscopy and size exclusion chromatography. According to the 1H NMR investigation the copper(I)‐catalyzed cycloaddition follows a second‐order kinetics with external catalysis. Additionally, the mechanical properties of the resulting polymers were investigated by depth sensing indentation. Thereby the polymerizations of the alkyne tripropargylamine with the azides 1,3‐bis(azidomethyl)benzene and 1,4‐bis(azidomethyl)benzene resulted in mechanical hard materials. Furthermore, the combination of the alkynes tripropargylamine and di(prop‐2‐yn‐1‐yl) isophorone dicarbamate and polymerization with 1,2‐bis(2‐azidoethoxy)ethane resulted in high indentation moduli. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 239–247  相似文献   

19.
The kinetics of the transesterification reaction between poly(ethylene terephthalate) (PET) and poly(ethylene 2,6‐naphthalate) (PEN) with and without the addition of a chain extender were studied with 1H NMR. Different kinetic approaches were considered, and a second‐order, reversible reaction was accepted for the PET/PEN reactive blend system. The addition of 2,2′‐bis(1,3‐oxazoline) (BOZ) promoted the transesterification reaction between PET and PEN in the molten state. The activation energy of the transesterification reaction for the PET/PEN reactive blend with BOZ (94.0 kJ/mol) was lower than that without BOZ (168.9KJ/mol). The rate constant k took an almost constant value for blend samples with different compositions mixed at 275 °C. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2607–2614, 2001  相似文献   

20.
A series of 2,6‐bis(imino)pyridines, as common ligands for late transition metal catalyst in ethylene coordination polymerization, were successfully employed in single‐electron transfer‐living radical polymerization (SET‐LRP) of methyl methacrylate (MMA) by using poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) (P(VDF‐co‐CTFE)) as macroinitiator with low concentration of copper catalyst under relative mild‐reaction conditions. Well‐controlled polymerization features were observed under varied reaction conditions including reaction temperature, catalyst concentration, as well as monomer amount in feed. The typical side reactions including the chain‐transfer reaction and dehydrochlorination reaction happened on P(VDF‐co‐CTFE) in atom‐transfer radical polymerization process were avoided in current system. The relationship between the catalytic activity and the chemical structure of 2,6‐bis(imino)pyridine ligands was investigated by comparing both the electrochemical properties of Cu(II)/2,6‐bis(imino)pyridine and the kinetic results of SET‐LRP of MMA catalyzed with different ligands. The substitute groups onto N‐binding sites with proper steric bulk and electron donating are desirable for both high‐propagation reaction rate and C? Cl bonds activation capability on P(VDF‐co‐CTFE). The catalytic activity of Cu(0)/2,6‐bis(imino)pyridines is comparable with Cu(0)/2,2′‐bipyridine under the consistent reaction conditions. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4378–4388  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号