首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A novel template monomer with multiple methacryloyl groups was synthesized with β‐cyclodextrin by the acetylation of primary hydroxyl groups and the esterification of secondary hydroxyl groups with methacrylic acid anhydride. The average number of methacryloyl groups in the monomer was 11. The radical polymerization of the monomer was carried out with the following initiators: α,α′‐azobisisobutylonitrile, H2O2? Fe2+ redox initiator, p‐xylyl‐N,N‐dimethyldithiocarbamate (XDC), and α‐bromo‐p‐xylyl‐N,N‐dimethyldithiocarbamate (BXDC). When the concentration of the monomer was less than 4.12 × 10?3 M, polymerization was limited inside the molecule, and gelation of the system was hindered. For controlled radical photopolymerization with XDC and BXDC, the methacryloyl groups of the monomer were homogeneously polymerized, and poly(methacrylic acid) with a narrow molecular weight distribution was obtained by the hydrolysis of the polymerized products. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3539–3546, 2001  相似文献   

2.
The free‐radical copolymerization of itaconic acid (IA) and styrene in solutions of dimethylformamide and d6‐dimethyl sulfoxide (50 wt %) has been studied by 1H NMR kinetic experiments. Monomer conversion versus time data were used to estimate the ratio kp · kt−0.5 for various comonomer mixture compositions. The ratio kp · kt−0.5 varies from 5.2 · 10−2 for pure styrene to 2.0 · 10−2 mol0.5 L−0.5 s−0.5 for pure IA, indicating a significant decrease in the rate of polymerization. Individual monomer conversion versus time traces were used to map out the comonomer mixture–composition drift up to overall monomer conversions of 60%. Within this conversion range, a slight but significant depletion of styrene in the monomer feed can be observed. This depletion becomes more pronounced at higher levels of IA in the initial comonomer mixture. The kinetic information is supplemented by molecular weight data for IA/styrene copolymers obtained by variation of the comonomer mixture composition. A significant decrease in molecular weight of a factor of 2 can be observed when increasing the mole fraction of IA in the initial reaction mixture from 0 to 0.5. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 656–664, 2001  相似文献   

3.
The free‐radical copolymerization of m‐isopropenyl‐α,α′‐dimethylbenzyl isocyanate (TMI) and styrene was studied with 1H NMR kinetic experiments at 70 °C. Monomer conversion vs time data were used to determine the ratio kp × kt?0.5 for various comonomer mixture compositions (where kp is the propagation rate coefficient and kt is the termination rate coefficient). The ratio kp × kt?0.5 varied from 25.9 × 10?3 L0.5 mol?0.5 s?0.5 for pure styrene to 2.03 × 10?3 L0.5 mol?0.5 s?0.5 for 73 mol % TMI, indicating a significant decrease in the rate of polymerization with increasing TMI content in the reaction mixture. Traces of the individual monomer conversion versus time were used to map out the comonomer mixture composition drift up to overall monomer conversions of 35%. Within this conversion range, a slight but significant depletion of styrene in the monomer feed was observed. This depletion became more pronounced at higher levels of TMI in the initial comonomer mixture. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1064–1074, 2002  相似文献   

4.
β‐Methyl‐α‐methylene‐γ‐butyrolactone (MMBL) was synthesized and then was polymerized in an N,N‐dimethylformamide (DMF) solution with 2,2‐azobisisobutyronitrile (AIBN) initiation. The homopolymer of MMBL was soluble in DMF and acetonitrile. MMBL was homopolymerized without competing depolymerization from 50 to 70 °C. The rate of polymerization (Rp) for MMBL followed the kinetic expression Rp = [AIBN]0.54[MMBL]1.04. The overall activation energy was calculated to be 86.9 kJ/mol, kp/kt1/2 was equal to 0.050 (where kp is the rate constant for propagation and kt is the rate constant for termination), and the rate of initiation was 2.17 × 10?8 mol L?1 s?1. The free energy of activation, the activation enthalpy, and the activation entropy were 106.0, 84.1, and 0.0658 kJ mol?1, respectively, for homopolymerization. The initiation efficiency was approximately 1. Styrene and MMBL were copolymerized in DMF solutions at 60 °C with AIBN as the initiator. The reactivity ratios (r1 = 0.22 and r2 = 0.73) for this copolymerization were calculated with the Kelen–Tudos method. The general reactivity parameter Q and the polarity parameter e for MMBL were calculated to be 1.54 and 0.55, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1759–1777, 2003  相似文献   

5.
The polymerization of N‐methyl‐α‐fluoroacrylamide (NMFAm) initiated with dimethyl 2,2′‐azobisisobutyrate (MAIB) in benzene was studied kinetically and with electron spin resonance. The polymerization proceeded heterogeneously with the highly efficient formation of long‐lived poly(NMFAm) radicals. The overall activation energy of the polymerization was 111 kJ/mol. The polymerization rate (Rp) at 50 °C is given by Rp = k[MAIB]0.75±0.05 [NMFAm]0.44±0.05. The concentration of the long‐lived polymer radical increased linearly with time. The formation rate (Rp?) of the long‐lived polymer radical at 50 °C is expressed by Rp? = k[MAIB]1.0±0.1 [NMFAm]0±0.1. The overall activation energy of the long‐lived radical formation was 128 kJ/mol, which agreed with the energy of initiation (129 kJ/mol), which was separately estimated. A comparison of Rp? with the initiation rate led to the conclusion that 1‐methoxycarbonyl‐1‐methylethyl radicals (primary radicals from MAIB), escaping from the solvent cage, were quantitatively converted into the long‐lived poly(NMFAm) radicals. Thus, this polymerization involves completely unimolecular termination due to polymer radical occlusion. 1H NMR‐determined tacticities of resulting poly(NMFAm) were estimated to be rr = 0.34, mr = 0.48, and mm = 0.18. The copolymerization of NMFAm(M1) and St(M2) with MAIB at 50 °C in benzene gave monomer reactivity ratios of r1 = 0.61 and r2 = 1.79. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2196–2205, 2001  相似文献   

6.
Single electron transfer‐living radical polymerization (SET‐LRP) represents a robust and versatile method for the rapid synthesis of macromolecules with defined architecture. The present article describes the polymerization of methyl methacrylate by SET‐LRP in protic solvent mixtures. Herein, the polymerization process was catalyzed by a straightforward Cu(0)wire/Me6‐TREN catalyst while initiation was obtained by toluenesulfonyl chloride. All experiments were conducted at 50 °C and the living polymerization was demonstrated by kinetic evaluation of the SET‐LRP. The process follows first order kinetic until all monomer is consumed which was typically achieved within 4 h. The molecular weight increased linearly with conversion and the molecular weight distributions were very narrow with Mw/Mn ~ 1.1. Detailed investigations of the polymer samples by MALDI‐TOF confirmed that no termination took place and that the chain end functionality is retained throughout the polymerization process. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2236–2242, 2010  相似文献   

7.
3‐Ethyl‐3‐methacryloyloxymethyloxetane (EMO) was easily polymerized by dimethyl 2,2′‐azobisisobutyrate (MAIB) as the radical initiator through the opening of the vinyl group. The initial polymerization rate (Rp) at 50 °C in benzene was given by Rp = k[MAIB]0.55 [EMO]1.2. The overall activation energy of the polymerization was estimated to be 87 kJ/mol. The number‐average molecular weight (M?n) of the resulting poly(EMO)s was in the range of 1–3.3 × 105. The polymerization system was found to involve electron spin resonance (ESR) observable propagating poly(EMO) radicals under practical polymerization conditions. ESR‐determined rate constants of propagation (kp) and termination (kt) at 60 °C are 120 and 2.41 × 105 L/mol s, respectively—much lower than those of the usual methacrylate esters such as methyl methacrylate and glycidyl methacrylate. The radical copolymerization of EMO (M1) with styrene (M2) at 60 °C gave the following copolymerization parameters: r1 = 0.53, r2 = 0.43, Q1 = 0.87, and e1 = +0.42. EMO was also observed to be polymerized by BF3OEt2 as the cationic initiator through the opening of the oxetane ring. The M?n of the resulting polymer was in the range of 650–3100. The cationic polymerization of radically formed poly(EMO) provided a crosslinked polymer showing distinguishably different thermal behaviors from those of the radical and cationic poly(EMO)s. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1269–1279, 2001  相似文献   

8.
The 1,1‐diphenylethene (DPE) controlled radical polymerization of methyl methacrylate was performed at 80 °C by using AIBN as an initiator and DPE as a control agent. It was found that the molecular weight of polymer remained constant with monomer conversion throughout the polymerization regardless of the amounts of DPE and initiator in formulation. To understand the result of constant molecular weight of living polymers in DPE controlled radical polymerization, a living kinetic model was established in this research to evaluate all the rate constants involved in the DPE mechanism. The rate constant k2, corresponding to the reactivation reaction of the DPE capped dormant chains, was found to be very small at 80 °C (1 × 10?5 s?1), that accounted for the result of constant molecular weight of polymers throughout the polymerization, analogous to a traditional free radical polymerization system that polymer chains were terminated by chain transfer. The polydispersity index (PDI) of living polymers was well controlled <1.5. The low PDI of obtained living polymers was due to the fact that the rate of growing chains capped by DPE was comparable with the rate of propagation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

9.
The kinetics and mechanism of the photoinitiated polymerization of tetrafunctional and difunctional methacrylic monomers [1,6‐hexanediol dimethacrylate (HDDMA) and 2‐ethylhexyl methacrylate (EHMA)] in a polystyrene (PS) matrix were studied. The aggregation state, vitreous or rubbery, of the monomer/matrix system and the intermolecular strength of attraction in the monomer/matrix and growing macroradical/matrix systems are the principal factors influencing the kinetics and mechanism. For the PS/HDDMA system, where a relatively high intermolecular force of attraction between monomer and matrix and between growing macroradical and matrix occurs, a reaction‐diffusion mechanism takes place at low monomer concentrations (<30–40%) from the beginning of the polymerization. For the PS/EHMA system, which presents low intermolecular attraction between monomer and matrix and between growing macroradical and matrix, the reaction‐diffusion termination is not clear, and a combination of reaction‐diffusion and diffusion‐controlled mechanisms explains better the polymerization for monomer concentrations below 30–40%. For both systems, for which a change from a vitreous state to a rubbery state occurs when the monomer concentration changes from 10 to 20%, the intrinsic reactivity and kp/kt1/2 ratio (where kp is the propagation kinetic constant and kt is the termination kinetic constant) increase as a result of a greater mobility of the monomer in the matrix (a greater kp value). The PS matrix participates in the polymerization process through the formation of benzylic radical, which is bonded to some extent by radical–radical coupling with the growing methacrylic radica, producing grafting on the PS matrix. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2049–2057, 2001  相似文献   

10.
The propagation‐rate constant of vinylidene chloride (VDC) was determined at 40 and 50 °C, respectively, by applying the so‐called Ugelstad plot to the polymerization‐rate data of the seeded and unseeded emulsion polymerizations of VDC. The values of the propagation‐rate constant kp thus determined are kp = 64 dm3/mol · s at 50 °C and kp = 52 dm3/mol · s at 40 °C, respectively. From these kp values, the activation energy for propagation reaction was determined to be Ep = 4.2 kcal/mol, which is close to that of vinyl chloride (3.7 kcal/mol). © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1005–1015, 2001  相似文献   

11.
Triphenylbismuthonium 1,2,3,4‐tetraphenylcyclopentadienylide in 1,4‐dioxan initiated radical polymerization of methyl acrylate to ~30% conversion without gelation because of autoacceleration. The polymer had a viscosity‐average molecular weight of 200,000. The kinetic expression was Rpα[I]0.3[M]1.16, that is, the system followed nonideal kinetics because of primary radical termination and degradative chain‐transfer reactions. The values of kkt and the energy of activation were computed as 3.12 × 10?5 Lmol?1s?1 and 28 kJ/mol, respectively. The ylide dissociated to form a phenyl radical, which brought about polymerization of methyl acrylate. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2060–2065, 2004  相似文献   

12.
An azido‐containing functional monomer, 11‐azido‐undecanoyl methacrylate, was successfully polymerized via ambient temperature single electron transfer initiation and propagation through the reversible addition–fragmentation chain transfer (SET‐RAFT) method. The polymerization behavior possessed the characteristics of “living”/controlled radical polymerization. The kinetic plot was first order, and the molecular weight of the polymer increased linearly with the monomer conversion while keeping the relatively narrow molecular weight distribution (Mw/Mn ≤ 1.22). The complete retention of azido group of the resulting polymer was confirmed by 1H NMR and FTIR analysis. Retention of chain functionality was confirmed by chain extension with methyl methacrylate to yield a diblock copolymer. Furthermore, the side‐chain functionalized polymer could be prepared by one‐pot/one‐step technique, which is combination of SET‐RAFT and “click chemistry” methods. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
The photosensitized degradation of poly(L ‐lactic acid) (PLA) via an anionic reaction process was studied using spectrophotometry, electron spin resonance (ESR), and gel permeation chromatography (GPC) measurements. PLA film doped with N,N,N′,N′‐tetramethyl‐p‐phenylenediamine (TMPD) was irradiated at 77 K using UV light (λc = 356 nm) by which the PLA matrix itself cannot be directly excited. After photoirradiation, a new broad absorption band appeared over the original spectrum due to TMPD+ ·, which was produced by two‐photon ionization. The ESR spectrum of the irradiated sample indicated the presence of the TMPD+ · radical and main‐chain scission radical of PLA. During the thermal annealing at 0 °C, the latter radical changed to another radical species by dehydrogenation of the alpha hydrogen of the PLA main chain. TMPD+ · was extremely stable at room temperature for 7 d. However, by thermal annealing at 40 °C, all the radicals decayed due to the enhanced molecular motions near Tg of PLA (58.7 °C). Spectral simulation for the obtained ESR spectra revealed the relative amounts of four radicals: TMPD+ ·, a main‐chain scission radical, a main‐chain tertiary radical, and an unknown radical. The last one was tentatively assigned to the PLA radical anion because of its short decay time. GPC measurements clearly indicated a decrease in the molecular weight of PLA after irradiation. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 706–714, 2001  相似文献   

14.
The single‐electron transfer living radical polymerization (SET‐LRP) of water‐soluble monomers, N,N‐dimethylacrylamide (DMA) and N‐isopropylacrylamide (NIPAM), initiated with 2‐methylchloropropionate (MCP) in dipolar aprotic and protic solvents is reported. The radical polymerization of acrylamides is characterized by higher rate constants of propagation and bimolecular termination than acrylates. Therefore, the addition of CuCl2 is required to mediate deactivation in the early stages of the reaction. Through the use of Cu(0)‐wire/Me6‐TREN catalysis, conditions were optimized to minimize the amount of externally added CuCl2 required to maintain a linear evolution of molecular weight and narrow molecular weight distribution. By using less CuCl2 additive, the amount of soluble copper species that must ultimately be removed from the reaction mixture is reduced. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1752–1763, 2010  相似文献   

15.
The kinetics of aqueous polymerization of the symmetrical nonconjugated divinyl monomer N,N′-methylenebis(acrylamide) (MBA), was studied at 35°C and at constant ionic strength under nitrogen atmosphere involving potassium peroxydiphosphate (PDP) as oxidant with three different activators thiolactic acid (TLA), thiomalic acid (TMA), and thioglycollic acid (TGA). The rate of polymerization, RP, and rate of disappearance of peroxydiphosphate, –RPDP have been followed while polymerization was initiated separately by the PDP–TLA/PDP–TMA/PDP–TGA redox systems. RP for the above three systems showed first-order dependences on both [monomer] and [activator] and zero-order dependence on [PDP]. First-order dependence on [PDP] and zero-order dependences on [monomer] and [activators] were observed with respect to –RPDP in the above three systems. A reaction mechanism which involves complex formation between PDP and thiocarboxylic acid, propagation through intramolecular–intermolecular reactions, degradative chain transfer reaction of the growing radical with PDP, and linear termination by the interaction of the chain radical with primary radical was proposed. The kinetic parameters for the three polymerization systems were calculated and compared. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 11–20, 1998  相似文献   

16.
A simplified kinetic model for RAFT microemulsion polymerization has been developed to facilitate the investigation of the effects of slow fragmentation of the intermediate macro‐RAFT radical, termination reactions, and diffusion rate of the chain transfer agent to the locus of polymerization on the control of the polymerization and the rate of monomer conversion. This simplified model captures the experimentally observed decrease in the rate of polymerization, and the shift of the rate maximum to conversions less than the 39% conversion predicted by the Morgan model for uncontrolled microemulsion polymerizations. The model shows that the short, but finite, lifetime of the intermediate macro‐RAFT radical (1.3 × 10?4–1.3 × 10?2 s) causes the observed rate retardation in RAFT microemulsion polymerizations of butyl acrylate with the chain transfer agent methyl‐2‐(O‐ethylxanthyl)propionate. The calculated magnitude of the fragmentation rate constant (kf = 4.0 × 101–4.0 × 103 s?1) is greater than the literature values for bulk RAFT polymerizations that only consider slow fragmentation of the macro‐RAFT radical and not termination (kf = 10?2 s?1). This is consistent with the finding that slow fragmentation promotes biradical termination in RAFT microemulsion polymerizations. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 604–613, 2010  相似文献   

17.
Methyl methacrylate (MMA) was polymerized in bulk at 70 °C in the presence of an alkoxyamine initiator with low dissociation temperature (the so‐called BlocBuilder?) and increasing amounts of free Ntert‐butyl‐N‐(1‐diethylphosphono‐2,2‐dimethylpropyl) nitroxide (SG1). Low final monomer conversions were reached, indicating a loss in radical activity due to side reactions such as irreversible homoterminations between the propagating radicals and β‐hydrogen transfer (also called disproportionation) from a propagating radical to a free‐SG1 nitroxide. Proton NMR and MALDI‐TOF mass spectrometry were used to analyze the polymer chain‐ends and to clearly identify the main mechanism of irreversible termination. In particular, it was shown that all polymer chains were terminated by an alkene function in the presence of a large excess of free SG1, meaning that β‐hydrogen transfer from PMMA propagating radicals to the nitroxide SG1 was the major chain‐stopping event. On the other hand, for a low excess of free SG1, the two termination modes coexisted. Kinetic modeling was then performed using the PREDICI software, and the rate constant of β‐hydrogen transfer, kβHtr, was estimated to be 1.69 × 103 L mol?1 s?1 at 70 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6333–6345, 2008  相似文献   

18.
The kinetics of the transesterification reaction between poly(ethylene terephthalate) (PET) and poly(ethylene 2,6‐naphthalate) (PEN) with and without the addition of a chain extender were studied with 1H NMR. Different kinetic approaches were considered, and a second‐order, reversible reaction was accepted for the PET/PEN reactive blend system. The addition of 2,2′‐bis(1,3‐oxazoline) (BOZ) promoted the transesterification reaction between PET and PEN in the molten state. The activation energy of the transesterification reaction for the PET/PEN reactive blend with BOZ (94.0 kJ/mol) was lower than that without BOZ (168.9KJ/mol). The rate constant k took an almost constant value for blend samples with different compositions mixed at 275 °C. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2607–2614, 2001  相似文献   

19.
A novel imidazolium‐containing monomer, 1‐[ω‐methacryloyloxydecyl]‐3‐(n‐butyl)‐imidazolium (1BDIMA), was synthesized and polymerized using free radical and controlled free radical polymerization followed by post‐polymerization ion exchange with bromide (Br), tetrafluoroborate (BF4), hexafluorophosphate (PF6), or bis(trifluoromethylsulfonyl)imide (Tf2N). The thermal properties and ionic conductivity of the polymers showed a strong dependence on the counter‐ions and had glass transition temperatures (Tg) and ion conductivities at room temperature ranging from 10 °C to −42 °C and 2.09 × 10−7 S cm−1 to 2.45 × 10−5 S cm−1. In particular, PILs with Tf2N counter‐ions showed excellent ion conductivity of 2.45 × 10−5 S cm−1 at room temperature without additional ionic liquids (ILs) being added to the system, making them suitable for further study as electro‐responsive materials. In addition to the counter‐ions, solvent was found to have a significant effect on the reversible addition‐fragmentation chain‐transfer polymerization (RAFT) for 1BDIMA with different counter‐ions. For example, 1BDIMATf2N would not polymerize in acetonitrile (MeCN) at 65 °C and only achieved low monomer conversion (< 5%) at 75 °C. However, 1BDIMA‐Tf2N proceeded to high conversion in dimethylformamide (DMF) at 65 °C and 1BDIMABr polymerized significantly faster in DMF compared to MeCN. NMR diffusometry was used to investigate the kinetic differences by probing the diffusion coefficients for each monomer and counter‐ion in MeCN and DMF. These results indicate that the reaction rates are not diffusion limited, and point to a need for deeper understanding of the role electrostatics plays in the kinetics of free radical polymerizations. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1346–1357  相似文献   

20.
This investigation reports the preparation of tailor‐made poly(2‐ethylhexyl acrylate) (PEHA) prepared via in situ living radical polymerization in the presence of layered silicates and characterization of this polymer/clay nanocomposite. Being a low Tg (?65 °C) material, PEHA has very good film formation property for which it is used in paints, adhesives, and coating applications. 2‐Ethylhexyl acrylate was polymerized at 90 °C using CuBr and Cu(0) as catalyst in combination with N,N,N′,N″,N″‐pentamethyl diethylenetriamine (PMDETA) as ligand. A tremendous enhancement in reaction rate and polymerization data was achieved when acetone was added as additive to increase the efficiency of the catalyst system. PEHA/clay nanocomposite was prepared at 90 °C using CuBr as catalyst in combination with PMDETA as ligand. Different types of clay with same loading were also used to study the effect on reaction rate. The molecular weight (Mn) and polydispersity index of the prepared nanocomposites were characterized by size exclusion chromatography. The active end group of the polymer chain was analyzed by 1H NMR analysis and by chain extension experiment. Polymer/clay interaction was studied by Fourier Transform Infrared spectrometry and wide‐angle X‐ray diffraction analyses. Distribution of clay in the polymer matrix was studied by the transmission electron microscopy. Thermogravimetric analysis showed that thermal stability of PEHA/clay nanocomposite increases on addition of nanoclay. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号