首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In‐line studies of the initial stages of shear‐induced coalescence in two‐phase polymer blends were carried out with a home‐built device combining a cone and plate rheometer and a fiber‐optic‐assisted fluorescence detection system. A blend of 90 wt % poly(2‐ethylhexyl methacrylate) (PEHMA) and 10 wt % poly(butyl methacrylate) (PBMA) was prepared by the casting of films onto a solid substrate from mixed aqueous latex dispersions of the two polymers. The dispersions were prepared via emulsion polymerization under conditions in which both components were formed as spherical particles with a very narrow size distribution. By using a 14:1 particle ratio of PEHMA to PBMA, we obtained films in which 120‐nm PBMA particles were surrounded by a PEHMA matrix. The blend contained phenanthrene‐labeled PBMA particles and anthracene‐labeled PBMA particles in a ratio of 4:1, whereas the PEHMA matrix polymer was unlabeled. We monitored the anthracene‐to‐phenanthrene fluorescence intensity ratio (I470/I360) as a measure of direct nonradiative energy transfer from phenanthrene to anthracene, whereas the blend was sheared at different shear rates and temperatures. Under no‐shear conditions, the results of in‐line experiments were in good agreement with the results of off‐line measurements of energy transfer by conventional techniques. In blends under shear, the two sets of experiments, in‐line and off‐line, did not agree with each other. The cause of this disagreement was associated with normal forces in the blend under shear that affected the optical path length and the relative intensities of the fluorescence signals of the phenanthrene and anthracene groups in the blend. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2302–2316, 2001  相似文献   

2.
Poly(3‐hydroxybutyrate) (PHB)/poly(glycidyl methacrylate) (PGMA) blends were prepared by a solution‐precipitation procedure. The compatibility and thermal decomposition behavior of the PHB/PGMA blends was studied with differential scanning calorimetry, thermogravimetric analysis, and differential thermal analysis (DTA). The blends were immiscible in the as‐blended state, but for the blends with PGMA contents of 50 wt % or more, the compatibility was dramatically changed after 1 min of annealing at 200 °C. In addition, PHB/PGMA blends showed higher thermal stability, as measured by maximum decomposition temperatures and residual weight during thermal degradation. This was probably due to crosslinking reactions of the epoxide groups in the PGMA component with the carboxyl chain ends of PHB fragments during the degradation process, and the occurrence of such reactions can be assigned to the exothermic peaks in the DTA thermograms. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 351–358, 2002  相似文献   

3.
Blends of isotactic (natural) poly(3‐hydroxybutyrate) (PHB) and poly(methyl methacrylate) (PMMA) are partially miscible, and PHB in excess of 20 wt % segregates as a partially crystalline pure phase. Copolymers containing atactic PHB chains grafted onto a PMMA backbone are used to compatibilize phase‐separated PHB/PMMA blends. Two poly(methyl methacrylate‐g‐hydroxybutyrate) [P(MMA‐g‐HB)] copolymers with different grafting densities and the same length of the grafted chain have been investigated. The copolymer with higher grafting density, containing 67 mol % hydroxybutyrate units, has a beneficial effect on the mechanical properties of PHB/PMMA blends with 30–50% PHB content, which show a remarkable increase in ductility. The main effect of copolymer addition is the inhibition of PHB crystallization. No compatibilizing effect on PHB/PMMA blends with PHB contents higher than 50% is observed with various amounts of P(MMA‐g‐HB) copolymer. In these blends, the graft copolymer is not able to prevent PHB crystallization, and the ternary PHB/PMMA/P(MMA‐g‐HB) blends remain crystalline and brittle. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1390–1399, 2002  相似文献   

4.
Miscible blends of poly(2‐hydroxyethyl methacrylate) (PHEMA) and poly(1‐vinylimidazole) (PVI) have been formed in methanol/water (3/2 v/v) solutions. The incorporation of 0.6 wt % C60 into PHEMA leads to hydrophobic interactions and enhanced hydrogen bonding in miscible blends of [60]fullerenated poly(2‐hydroxyethyl methacrylate) (FPHEMA) with PVI. The incorporation of 2.6 wt % C60 into PHEMA increases its tendency to form interpolymer complexes with PVI. Interpolymer complexes are formed when FPHEMA samples containing 0.6, 1.4, and 2.6 wt % C60 are blended with poly(4‐vinylpyridine). The yields of the complexes increase with increasing C60 content in FPHEMA. Calorimetry and Fourier transform infrared spectroscopy studies suggest the importance of hydrophobic interactions in C60‐containing blends and complexes. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4316–4327, 2002  相似文献   

5.
Compatibilization of blends of polybutadiene and poly(methyl methacrylate) with butadiene-methyl methacrylate diblock copolymers has been investigated by transmission electron microscopy. When the diblock copolymers are added to the blends, the size of PB particles decreases and their size distribution gets narrower. In PB/PMMA7.6K blends with P(B-b-MMA)25.2K as a compatibilizer, most of micelles exist in the PMMA phase. However, using P(B-b-MMA)38K as a compatibilizer, the micellar aggregation exists in PB particles besides that existing in the PMMA phase. The core of a micelle in the PMMA phase is about 10 nm. In this article the influences of temperature and homo-PMMA molecular weight on compatibilization were also examined. At a high temperature PB particles in blends tend to agglomerate into bigger particles. When the molecular weight of PMMA is close to that of the corresponding block of the copolymer, the best compatibilization result would be achieved. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 85–93, 1998  相似文献   

6.
The dynamic mechanical and thermal properties of natural rubber/poly (methyl methacrylate) blends (NR/PMMA) with and without the addition of graft copolymer (NR‐g‐PMMA) have been investigated. Dynamic mechanical spectroscopy is used to examine the effect of compatibilizer loading on storage modulus (E′), loss modulus (E″) and loss tangent (tan δ) at different temperatures and at different frequencies. The morphology of the blends indicates that the size of the dispersed phase decreased by the addition of a few percent of the graft copolymer followed by a leveling off at higher concentrations. This is an indication of interfacial saturation. Attempts have been made to correlate morphology with dynamic mechanical properties. Various models have been used to fit the experimental viscoelastic results. Differential scanning calorimetry has been used to analyze the glass‐transition temperatures of the blends. The thermal stability of the blends has been analyzed by thermogravimetry. Compatibilized blends are found to be more thermally stable than uncompatibilized blends. Finally the miscibility and mechanical properties of the blends annealed above Tg are evaluated. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 525–536, 2000  相似文献   

7.
[60]Fullerenated poly(2‐hydroxyethyl methacrylate)s containing 0.6–3.0 wt % C60 were synthesized. These polymers are soluble in methanol and N,N‐dimethylformamide (DMF). [60]Fullerenated poly(2‐hydroxyethyl methacrylate)s with higher C60 contents are only sparingly soluble in DMF and virtually insoluble in other organic solvents. A loading of 1.2 wt % C60 in poly(2‐hydroxyethyl methacrylate) does not greatly affect its miscibility with poly(N‐vinyl‐2‐pyrrolidone), poly(1‐vinylimidazole), and poly(4‐vinylpyridine). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1157–1166, 2002  相似文献   

8.
The stress–strain diagrams and ultimate tensile properties of uncompatibilized and compatibilized hydrogenated polybutadiene‐block‐poly(methyl methacrylate) (HPB‐b‐PMMA) blends with 20 wt % poly(methyl methacrylate) (PMMA) droplets dispersed in a low‐density polyethylene (LDPE) matrix were studied. The HPB‐b‐PMMA pure diblock copolymer was prepared via controlled living anionic polymerization. Four copolymers, in terms of the molecular weights of the hydrogenated polybutadiene (HPB) and PMMA sequences (22,000–12,000, 63,300–31,700, 49,500–53,500, and 27,700–67,800), were used. We demonstrated with the stress–strain diagrams, in combination with scanning electron microscopy observations of deformed specimens, that the interfacial adhesion had a predominant role in determining the mechanism and extent of blend deformation. The debonding of PMMA particles from the LDPE matrix was clearly observed in the compatibilized blends in which the copolymer was not efficiently located at the interface. The best HPB‐b‐PMMA copolymer, resulting in the maximum improvement of the tensile properties of the compatibilized blend, had a PMMA sequence that was approximately half that of the HPB block. Because of the much higher interactions encountered in the PMMA phase in comparison with those in HPB (LDPE), a shorter sequence of PMMA (with respect to HPB but longer than the critical molecular weight for entanglement) was sufficient to favor a quantitative location of the copolymer at the LDPE/PMMA interface. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 22–34, 2005  相似文献   

9.
A miscible homopolymer–copolymer pair viz., poly(ethyl methacrylate) (PEMA)–poly(styrene‐co‐butyl acrylate) (SBA) is reported. The miscibility has been studied using differential scanning calorimetry. While 1 : 1 (w/w) blends with SBA containing 23 and 34 wt % styrene (ST) become miscible only above 225 and 185 °C respectively indicating existence of UCST, those with SBA containing 63 wt % ST is miscible at the lowest mixing temperature (i.e., Tg's) but become immiscible when heated at ca 250 °C indicating the existence of LCST. Miscibility for blends with SBA of still higher ST content could not be determined by this method because of the closeness of the Tg's of the components. The miscibility window at 230 °C refers to the two copolymer compositions of which one with the lower ST content is near the UCST, while the other with the higher ST content is near the LCST. Using these compositions and the mean field theory binary interaction parameters between the monomer residues have been calculated. The values are χST‐BA = 0.087 and χEMA‐BA = 0.013 at 230 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 369–375, 2000  相似文献   

10.
Phenyl methacrylate and 1‐naphthyl methacrylate were polymerized in microemulsions using stearyltrimethylammonium chloride, cetyltrimethylammonium bromide, and a mixture of nonionic Triton surfactants to form latexes that were 20–30 nm in diameter. A temperature of 70 °C was needed to obtain polymers using thermal initiation. The tacticities of poly(phenyl methacrylate) (PPhMA) (55% rr) and poly(1‐naphthyl methacrylate) (P‐1‐NM) (47% rr) were the same as those of the polymers prepared in toluene solutions. The weight average molecular weights were 1 × 106 and 5 × 105 g/mol for PPhMA and P‐1‐NM prepared in microemulsions with very broad distributions. PPhMA samples from microemulsions and solution had the same Tg = 127 °C. P‐1‐NM from microemulsions had Tg = 145–147 °C compared with Tg = 142 °C for P‐1‐NM from solution. The molecular weights and the glass‐transition temperatures of both PPhMA and P‐1‐NM from microemulsions are substantially higher than any previously reported. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 519–524, 2001  相似文献   

11.
Blends of amorphous poly(DL‐lactide) (DL‐PLA) and crystalline poly(L‐lactide) (PLLA) with poly(methyl methacrylate) (PMMA) were prepared by both solution/precipitation and solution‐casting film methods. The miscibility, crystallization behavior, and component interaction of these blends were examined by differential scanning calorimetry. Only one glass‐transition temperature (Tg) was found in the DL‐PLA/PMMA solution/precipitation blends, indicating miscibility in this system. Two isolated Tg's appeared in the DL‐PLA/PMMA solution‐casting film blends, suggesting two segregated phases in the blend system, but evidence showed that two components were partially miscible. In the PLLA/PMMA blend, the crystallization of PLLA was greatly restricted by amorphous PMMA. Once the thermal history of the blend was destroyed, PLLA and PMMA were miscible. The Tg composition relationship for both DL‐PLA/PMMA and PLLA/PMMA miscible systems obeyed the Gordon–Taylor equation. Experiment results indicated that there is no more favorable trend of DL‐PLA to form miscible blends with PMMA than PLLA when PLLA is in the amorphous state. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 23–30, 2003  相似文献   

12.
This study was related to the investigation of the chemical fixation of carbon dioxide to a copolymer bearing epoxide and the application of the cyclic carbonate group containing copolymer‐to‐polymer blends. In the synthesis of poly[(2‐oxo‐1,3‐dioxolane‐4‐yl) methyl methacrylate‐co‐ethyl acrylate] [poly(DOMA‐co‐EA)] from poly(glycidyl methacrylate‐co‐ethyl acrylate) [poly(GMA‐co‐EA)] and CO2, quaternary ammonium salts showed good catalytic activity. The films of poly(DOMA‐co‐EA) with poly(methyl methacrylate) (PMMA) or poly(vinyl chloride) (PVC) blends were cast from N,N′‐dimethylformamide solution. The miscibility of the blends of poly(DOMA‐co‐EA) with PMMA or PVC have been investigated both by DSC and visual inspection of the blends. The optical clarity test and DSC analysis showed that poly(DOMA‐co‐EA) containing blends were miscible over the whole composition range. The miscibility behaviors were discussed in terms of Fourier transform infrared spectra and interaction parameters based on the binary interaction model. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1472–1480, 2001  相似文献   

13.
A model polyethylene‐poly(L ‐lactide) diblock copolymer (PE‐b‐PLLA) was synthesized using hydroxyl‐terminated PE (PE‐OH) as a macroinitiator for the ring‐opening polymerization of L ‐lactide. Binary blends, which contained poly(L ‐lactide) (PLLA) and very low‐density polyethylene (LDPE), and ternary blends, which contained PLLA, LDPE, and PE‐b‐PLLA, were prepared by solution blending followed by precipitation and compression molding. Particle size analysis and scanning electron microscopy results showed that the particle size and distribution of the LDPE dispersed in the PLLA matrix was sharply decreased upon the addition of PE‐b‐PLLA. The tensile and Izod impact testing results on the ternary blends showed significantly improved toughness as compared to the PLLA homopolymer or the corresponding PLLA/LDPE binary blends. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2755–2766, 2001  相似文献   

14.
New super‐tough poly(butylene terephthalate) (PBT)/poly(ethylene‐octene) copolymer (PEO) blends containing 2 wt% poly(ethylene‐co‐glycidyl methacrylate) (EGMA) as a compatibilizer were obtained by extrusion and injection molding. The blends comprised of an amorphous PBT‐rich phase with some miscibilized EGMA, a pure PEO amorphous phase, and a crystalline PBT phase that was not influenced by the presence of either PEO or EGMA. The blends showed a fine particle size up to 20 wt% PEO content. Super‐tough blends were obtained with PEO contents equal to or higher than 10%. The maximum toughness was very high (above 710 J/m) and was attained with 20% PEO without chemical modification of the commercial components used. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Polypropylene/poly(butyl methacrylate)(PP/PBMA) blends were prepared by diffusion and subsequent polymerization of butyl methacrylate(BMA) in commercial isotactic polypropylene(iPP) pellets.The diffusion kinetics,diametrical distribution of PBMA in a pellet and phase morphology of a typical PP/PBMA blend were investigated.  相似文献   

16.
Simultaneous IPNs of poly(dimethyl siloxane-urethane) (PDMSU)/poly(methyl methacrylate) (PMMA) and related isomers have been prepared by using new oligomers of bis(β-hydroxyethoxymethyl)poly(dimethyl siloxane)s (PDMS diols) and new crosslinkers biuret triisocyanate (BTI) and tris(β-hydroxylethoxymethyl dimethylsiloxy) phenylsilane (Si-triol). Their phase morphology have been characterized by DSC and SEM. The SEM phase domain size is decreased by increasing crosslink density of the PDMSU network. A single phase IPN of PDMSU/PMMA can be made at an Mc = 1000 and 80 wt % of PDMSU. All of the pseudo- or semi-IPNs and blends of PDMSU and PMMA were phase separated with phase domain sizes ranging from 0.2 to several micrometers. The full IPNs of PDMSU/PMMA have better thermal resistance compared to the blends of linear PDMSU and linear PMMA. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
We employed high‐resolution 13C cross‐polarization/magic‐angle‐spinning/dipolar‐decoupling NMR spectroscopy to investigate the miscibility and phase behavior of poly(vinyl chloride) (PVC)/poly(methyl methacrylate) (PMMA) blends. The spin–lattice relaxation times of protons in both the laboratory and rotating frames [T1(H) and T(H), respectively] were indirectly measured through 13C resonances. The T1(H) results indicate that the blends are homogeneous, at least on a scale of 200–300 Å, confirming the miscibility of the system from a differential scanning calorimetry study in terms of the replacement of the glass‐transition‐temperature feature. The single decay and composition‐dependent T(H) values for each blend further demonstrate that the spin diffusion among all protons in the blends averages out the whole relaxation process; therefore, the blends are homogeneous on a scale of 18–20 Å. The microcrystallinity of PVC disappears upon blending with PMMA, indicating intimate mixing of the two polymers. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2390–2396, 2001  相似文献   

18.
Melt‐processable blends were prepared from rigid molecules of an ionically modified poly(p‐phenylene terephthalamide) (PPTA) and flexible‐coil molecules of poly(4‐vinylpyridine) (PVP). Dynamic mechanical analyses of blends with 50% or more of the ionic PPTA component revealed the presence of two distinct phases. The glass‐transition temperature of the more stable, ionic PPTA‐rich phase increased linearly with the ionic PPTA content. The second phase present in these blends was an ionic PPTA‐poor, or a PVP‐rich, phase. For this phase, a reasonably good fit of the data, showing the glass‐transition temperature as a function of the ionic PPTA content, was achieved between the results of this study and the reported results of previous investigation of molecular composites of the same two components with ionic PPTA contents of 15 wt % or less. The possible influence of annealing on the blend structure of a 90/10 blend of ionic PPTA and PVP was examined. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1468–1475, 2003  相似文献   

19.
Regioregular poly(3‐hexylthiophene)‐b‐poly(1H,1H‐dihydro perfluorooctyl methacrylate) (P3HT‐b‐PFOMA) diblock copolymers were synthesized by atom transfer radical polymerization of fluorooctyl methacrylate using bromoester terminated poly(3‐hexylthiophene) macroinitiators in order to investigate their morphological properties. The P3HT macroinitiator was previously prepared by chemical modification of hydroxy terminated P3HT. The block copolymers were well characterized by 1H NMR spectroscopy and gel permeation chromatography. Transmission electron microscopy was used to investigate the nanostructured morphology of the diblock copolymers. The block copolymers are able to undergo microphase separation and self‐assemble into well‐defined and organized nanofibrillar‐like micellar morphology. The development of the morphology of P3HT‐b‐PFOMA block copolymers was investigated after annealing in solvent vapor and also in supercritical CO2. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
Cyclohexylcarbodiimidoethyl methacrylate (CCEMA) and t‐butylcarbodiimidoethyl methacrylate (t‐BCEMA) were prepared in a two‐step synthesis. These monomers were then used to prepare carbodiimide‐functionalized PBMA and PEHMA latex particles, employing two‐stage emulsion polymerization, with the carbodiimide–methacrylate monomers being introduced only in the second stage under monomer‐starved conditions. During emulsion polymerization, the carbodiimide moiety ( NCN ) was found to be unstable at pH 4, but stable when the pH of the dispersion was increased to 8, using NaHCO3 as the buffer. Survival of  NCN group against hydrolysis during the polymerization, and during storage in the dispersion, was enhanced by using EHMA as the comonomer (more hydrophobic) and the t‐butyl carbodiimide derivative. The t‐butyl group provides more steric hindrance to the hydrolysis reaction. A decrease in the reaction temperature from 80°C to 60°C was also found to increase the extent of  NCN group incorporation during emulsion polymerization. Under ideal conditions, more than 98% of the  NCN groups in the monomer feed are successfully incorporated into the latex. When these latex particles are mixed with a  COOH containing latex and allowed to dry, polymer diffusion leading to crosslinking occurs. Films annealed at 60°C reach a gel content of 60% in 10 h. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 855–869, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号