共查询到20条相似文献,搜索用时 0 毫秒
1.
T. Philip Gnanarajan A. Sultan Nasar N. Padmanabha Iyer Ganga Radhakrishnan 《Journal of polymer science. Part A, Polymer chemistry》2000,38(22):4032-4037
A set of poly(urethane‐imide)s were prepared using blocked Polyurethane (PU) prepolymer and pyromellitic dianhydride (PMDA). The PU prepolymer was prepared by the reaction of polyether glycol and 2,4‐tolylene diisocyanate, and end capped with N‐methyl aniline. The PU prepolymer was reacted with PMDA until the evolution of carbon dioxide ceased. The effect of tertiary amine catalysts, organo tin catalysts, solvents, and reaction temperature were studied and compared with the poly(urethane‐imide) prepared using phenol‐blocked PU prepolymer. N‐methyl aniline blocked PU prepolymer gave a higher molecular weight poly(urethane‐imide) at a lower reaction temperature in a shorter time. Amine catalysts were found to be more efficient than organo tin catalysts. The reaction was favorable in particular with N‐ethylmorpholine and diazabicyclo(2.2.2)octane (DABCO) as catalysts, and dimethylpropylene urea as a reaction medium. The poly(urethane‐imide)s were characterized by FTIR, GPC, TGA, and DSC analyses. The molecular weight decreased with an increase in reaction temperature. The thermal stability of the PU was found to increase by the introduction of imide component. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4032–4037, 2000 相似文献
2.
Tsutomu Takeichi Yong Guo Tarek Agag 《Journal of polymer science. Part A, Polymer chemistry》2000,38(22):4165-4176
Poly(urethane‐benzoxazine) films as novel polyurethane ( PU )/phenolic resin composites were prepared by blending a benzoxazine monomer ( Ba ) and PU prepolymer that was synthesized from 2,4‐tolylene diisocyanate (TDI) and polyethylene adipate polyol (MW ca. 1000) in 2 : 1 molar ratio. DSC of PU/Ba blend showed an exotherm with maximum at ca. 246 °C due to the ring‐opening polymerization of Ba, giving phenolic OH functionalities that react with isocyanate groups in the PU prepolymer. The poly(urethane‐benzoxazine) films obtained by thermal cure were transparent, with color ranging from yellow to pale wine with increase of Ba content. All the films have only one glass transition temperature (Tg ) from viscoelastic measurements, indicating no phase separation in poly(urethane‐benzoxazine) due to in situ polymerization. The Tg increased with the increase of Ba content. The films containing 10 and 15% of Ba have characteristics of an elastomer, with elongation at break at 244 and 182%, respectively. These elastic films exhibit good resilience with excellent reinstating behavior. The films containing more than 20% of Ba have characteristics of plastics. The poly(urethane‐benzoxazine) films showed excellent resistance to the solvents such as tetrahydrofuran, N,N‐dimethyl formamide, and N‐methyl‐2‐pyrrolidinone that easily dissolve PU s. Thermal stability of PU was greatly enhanced even with the incorporation of a small amount of Ba . © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4165–4176, 2000 相似文献
3.
Thibaud Debuissy Eric Pollet Luc Avérous 《Journal of polymer science. Part A, Polymer chemistry》2017,55(11):1949-1961
Telechelic hydroxylated poly(3‐hydroxybutyrate) (PHB‐diol) oligomers have been successfully synthesized in 90–95% yield from high molar mass PHB by tin‐catalyzed alcoholysis with different diols (mainly 1,4‐butanediol) in diglyme. The PHB‐diol oligomers structure was studied by nuclear magnetic resonance, Fourier transformed infrared spectroscopy MALDI‐ToF MS, and size exclusion chromatography, whereas their crystalline structures, thermal properties and thermal stability were analyzed by wide angle X‐ray scattering, DSC, and thermogravimetric analyses. The kinetic of the alcoholysis was studied and the influence of (i) the catalyst amount, (ii) the diol amount, (iii) the reaction temperature, and (iv) the diol chain length on the molar mass was discussed. The influence of the PHB‐diol molar mass on the thermal stability, the thermal properties and optical properties was investigated. Then, tin‐catalyzed poly(ester‐ether‐urethane)s (PEEU) of Mn = 15,000–20,000 g/mol were synthesized in 1,2‐dichloroethane from PHB‐diol oligomers (Pester) with modified 4,4'‐MDI and different polyether‐diols (Pether) (PEG‐2000, PEG‐4000, and PPG‐PEG‐PPG). The influence of the PHB‐diol chain length, the Pether/Pester ratio, the polyether segment nature and the PEG chain length on the thermal properties and crystalline structures of PEEUs was particularly discussed. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1949–1961 相似文献
4.
Jung‐Ohk Kweon Yong‐Kuen Lee Si‐Tae Noh 《Journal of polymer science. Part A, Polymer chemistry》2001,39(23):4129-4138
Poly(N‐substituted urethane)s with an alkyl or ligo(ethylene oxide) monomethyl ether side chain were synthesized by the reaction operating in the following two‐step process: first, by metalation of the starting polymer with potassium tertiary butoxide (t‐BuOK) and then by treatment of the obtained urethane polyanion with tosylate in dimethyl sulfoxide. The thermal properties of poly(ethylene oxide) poly(N‐substituted urethane) (N‐sub PEOPU) were investigated in view of the N‐substitution degree and properties of the substituent. The chemical structures were characterized by Fourier transform infrared, 1H NMR, and 13C NMR spectroscopies. DSC and thermogravimetric analysis (TGA) were used to investigate the thermal properties of N‐sub PEOPUs. As the degree of N‐methylation increased, the glass‐transition temperature (Tg) of the N‐sub PEOPUs linearly decreased from 6 to ?29 °C, and the weight‐loss temperature of 5% (T) from TGA in air increased from 278 to 360 °C. In the fully N‐substituted PEOPUs, the behavior of the thermal decomposition of the PEOPU that was processed in two stages was changed to one‐step decomposition in the temperature range of 360–440 °C. The Tg was shifted to a lower temperature with an increasing length of the substituent in N‐sub PEOPU. Improvement of the thermal stability by N‐substitution was more significant in N‐alkyl PEOPU than in N‐ethoxylate PEOPU. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4129–4138, 2001 相似文献
5.
Chau N. Tang Hunaid B. Nulwala Krishnan Damodaran Palwinder Kaur David R. Luebke 《Journal of polymer science. Part A, Polymer chemistry》2011,49(9):2024-2032
CO2‐based, crosslinked poly(hydroxyl urethane)s (PHUs) are accessed via a set of efficient reactions based on the addition chemistry of thiol‐ene and amines‐cyclic carbonates. This strategy to utilize 5‐membered cyclic carbonates produced from CO2 is robust, facile, modular, and atomically efficient in nature. The thiol‐ene reaction was utilized to access bis(cyclic carbonate), tris(cyclic carbonate), and tetrakis(cyclic carbonate) in quantitative yield from 4‐vinyl‐1,3‐dioxolan‐2‐one and thiols. Multi‐functional cyclic carbonates were simply mixed with diethylenetriamine and/or 1,6‐diaminohexane to generate crosslinked PHUs from 25 to 80 °C. These materials are easy to scale‐up and are potential candidates in many applications such as coatings, binders, and resins. The resulting polymers have glass transition temperatures between ?1 and 16 °C and thermal decomposition temperatures from 190 to 230 °C. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
6.
In the present work, a new method was developed for the combination of polyurethanes (PUs) and polybenzoxazine (PBz) to obtain novel thermoset poly(urethane‐co‐benzoxazine)s with good thermal, mechanical, and electrical properties as well as low temperature curing profile. Knowing the catalytic effect of compounds possessing free phenolic groups on ring opening polymerization of benzoxazine monomers, preparation of phenol terminated urethane oligomers (PTPU) as the macroinitiator for a benzoxazine monomer (Ba) was considered. Firstly, NCO‐terminated urethane prepolymers were prepared from the reaction of poly(tetramethyleneether glycol), and 2,4‐tolylene diisocyanate, and then end functionalized with bisphenol‐A under proper condition. DSC, DMTA, and gel content measurements were applied to find optimum ring opening polymerization condition (170°C for 1 hr and 200°C for 15 min). Various kinds of thermoset polymers were prepared by the reaction of PTPU at different molecular weights with variable contents of Ba. All of monomeric and polymeric materials were characterized by conventional spectroscopic methods and their thermal, mechanical, viscoelastic, and electrical properties were measured and properties were correlated to their structure. Due to the interesting properties of these new materials, the possibility of using them as electrical insulators with higher service temperature in comparison to common PUs were examined and their potential applicability was confirmed. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
7.
Poly(vinylidene fluoride) (PVDF) membranes were hydrophilic modified with hydroxyl group terminated hyperbranched poly(amine‐ester) (HPAE). Fourier transform infrared spectroscopy (FT‐IR) was used to study the chemical change of PVDF membranes. X‐ray photoelectron spectroscopy (XPS) indicated that some HPAE molecules were retained in PVDF membrane through polymer chain coiling. The presence of HPAE would improve the hydrophilicity of PVDF membrane. Scanning electron microscopy (SEM) was employed to characterize the morphology of different membranes. The thermodynamic stability for PVDF/DMAc/HPAE/Water system was characterized by the determination of the gelation values. Precipitation kinetics for PVDF/DMAc/HPAE/Water system was studied by precipitation time measurement. The water contact angle indicated that the hydrophilicity and the biocompatibility corresponding to protein adsorption of PVDF membrane were improved significantly after blending with hydrophilic HPAE molecules. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
8.
A new hyperbranched poly (amine‐ester)‐poly (lactide‐co‐glycolide) copolymer (HPAE‐co‐PLGA) was synthesized by ring‐opening polymerization of D , L ‐lactide (DLLA) glycolid and branched poly (amine‐ester) (HPAE‐OHs) with Sn(Oct)2 as catalyst. The chemical structures of copolymers were determined by FT‐IR, 1H‐NMR(13C NMR), TGA and their molecular weights were determined by gel permeation chromatography (GPC). Paclitaxel‐loaded copolymer nanoparticles were prepared by the nanoprecipitation method. Their physicochemical characteristics, e.g. morphology and nanoparticles size distribution were then evaluated by means of fluorescence spectroscopy, environmental scanning electron microscopy (ESEM), and dynamic light scattering (DLS). Paclitaxel‐loaded nanoparticles assumed a spherical shape and have unimodal size distribution. It was found that the chemical composition of the nanoparticles was a key factor in controlling nanoparticles size, drug‐loading content, and drug release behavior. As the molar ratio of DL ‐lactide/glycolide to HPAE increased, the nanoparticles size and drug‐loading content increased, and the drug release rate decreased. The antitumor activity of the paclitaxel‐loaded HPAE‐co‐PLGA nanoparticles against human liver cancer H7402 cells was evaluated by 3‐(4, 5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) method. The paclitaxel‐loaded HPAE‐co‐PLGA nanoparticles showed comparable anticancer efficacy with the free drug. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
9.
Ren‐Shen Lee Jen‐Ming Yang 《Journal of polymer science. Part A, Polymer chemistry》2000,38(13):2449-2455
The synthesis of hydroxyproline‐based telechelic prepolymers by the condensation polymerization of trans‐4‐hydroxy‐N‐benzyloxycarbonyl‐L ‐proline methyl ester was investigated. All the polymerizations were carried out in the melt with stannous octoate as the catalyst and with different diols. The products were characterized by differential scanning calorimetry, proton nuclear magnetic resonance, infrared spectrophotometry, and inherent viscosity (ηinh). According to the analytic results, the ηinh value of the prepolymers depended on the kind and amount of diols that were added. With an increase in the 1,6‐hexanediol feed from 2 to 10 mol %, there was a decrease in ηinh from 0.78 to 0.41 along with a decrease in the glass‐transition temperature (Tg ) from 63 to 42 °C. When 2 mol % of different kinds of diols were used, ηinh ranged from 0.78 to 0.21, and Tg varied from 70 to 43 °C. These new prepolymers could be linked to poly(ester‐urethane) by the chain extender 1,6‐hexamethylene diisocyanate. The poly(ester‐urethane) was amorphous, and the Tg was 76 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2449–2455, 2000 相似文献
10.
XiuMin Qin XiaoHui Yang XinLing Wang MingJun Wang 《Journal of polymer science. Part A, Polymer chemistry》2005,43(19):4469-4477
Several new glycols containing both imide and sulfone groups, sulfonyl bisimide glycol (SBIG), were prepared from primary aromatic diamine, trimellitic anhydride and excess low molecular glycols. Then these SBIGs were used as chain extender to prepare a series of thermoplastic poly(imide‐urethane) (PIU), which introduced imide rings into the backbones. Compared to conventional linear polyurethane (PU), these PIUs exhibited better thermal stabilities because of the presence of the sulfone and built‐in imide groups. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4469–4477, 2005 相似文献
11.
R. Jayakumar Y.‐S. Lee S. Nanjundan 《Journal of polymer science. Part A, Polymer chemistry》2003,41(18):2865-2878
The calcium salt of mono(hydroxyethoxyethyl)phthalate [Ca(HEEP)2] was synthesized by the reaction of diethylene glycol, phthalic anhydride, and calcium acetate. Calcium‐containing poly(urethane ether)s (PUEs) were synthesized by the reaction of hexamethylene diisocyanate (HMDI) or tolylene 2,4‐diisocyanate (TDI) with a mixture of Ca(HEEP)2 and poly(ethylene glycol) (PEG300 or PEG400) with di‐n‐butyltin dilaurate as a catalyst. A series of calcium‐containing PUEs of different compositions were synthesized with Ca(HEEP)2/PEG300 (or PEG400)/diisocyanate (HMDI or TDI) molar ratios of 2:2:4, 3:1:4, and 1:3:4 so that the coating properties of the PUEs could be studied. Blank PUEs without calcium‐containing ionic diols were also prepared by the reaction of PEG300 or PEG400 with HMDI or TDI. The PUEs were well characterized by Fourier transform infrared, 1H and 13C NMR, solid‐state cross‐polarity/magic‐angle‐spinning 13C NMR, viscosity, solubility, and X‐ray diffraction studies. The thermal properties of the polymers were also studied with thermogravimetric analysis and differential scanning calorimetry. The PUEs were applied as top coats on acrylic‐coated leather, and their physicomechanical properties were also studied. The coating properties of PUEs, such as the tensile strength, elongation at break, tear strength, water vapor permeability, flexing endurance, cold crack resistance, abrasion resistance, color fastness, and adhesive strength, were better than the standard values. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2865–2878, 2003 相似文献
12.
Guey‐Sheng Liou Sheng‐Huei Hsiao Tzy‐Hsiang Su 《Journal of polymer science. Part A, Polymer chemistry》2005,43(15):3245-3256
We describe the preparation, characterization, and luminescence of four novel electrochromic aromatic poly(amine hydrazide)s containing main‐chain triphenylamine units with or without a para‐substituted N,N‐diphenylamino group on the pendent phenyl ring. These polymers were prepared from either 4,4′‐dicarboxy‐4″‐N,N‐diphenylaminotriphenylamine or 4,4′‐dicarboxytriphenylamine and the respective aromatic dihydrazide monomers via a direct phosphorylation polycondensation reaction. All the poly(amine hydrazide)s were amorphous and readily soluble in many common organic solvents and could be solution‐cast into transparent and flexible films with good mechanical properties. These poly(amine hydrazide)s exhibited strong ultraviolet–visible absorption bands at 346–348 nm in N‐methyl‐2‐pyrrolidone (NMP) solutions. Their photoluminescence spectra in NMP solutions or as cast films showed maximum bands around 508–544 and 448–487 nm in the green and blue region for the two series of polymers. The hole‐transporting and electrochromic properties were examined by electrochemical and spectroelectrochemical methods. All obtained poly(amine hydrazide)s and poly(amine‐1,3,4‐oxadiazole)s exhibited two reversible oxidation redox couples at 0.8 and 1.24 V vs. Ag/AgCl in acetonitrile solution and revealed excellent stability of electrochromic characteristics, changing color from original pale yellow to green and then to blue at electrode potentials of 0.87 and 1.24 V, respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3245–3256, 2005 相似文献
13.
Silicone‐urethane membranes for lithium batteries. Part 1. Moisture‐cured poly(siloxane‐urethane‐urea) elastomers containing polyethylene oxide (PEO) segments – synthesis and characterization as potential membrane materials 下载免费PDF全文
Poly(siloxane‐urethane‐urea) elastomers containing both polysiloxane and polyethylene oxide (PEO) segments in the polymer chain were obtained by moisture‐curing of NCO‐terminated poly(siloxane‐urethane) prepolymers synthesized from isophorone diisocyanate and mixtures of polyoxyethylene diols and polysiloxane diols with various molecular weights. Mechanical properties of the moisture‐cured films and their swelling ability in solvent mixtures commonly used in lithium batteries were investigated, and it was found that they were greatly influenced by PEO content in the polymer. PEO content in the polymer was also found to affect very much the electric conductivity of the films after immersion in lithium salt solution in ethylene carbonate–dimethyl carbonate solvent mixture. At high contents of PEO in the polymer chain specific conductivities of the films in a range of 10?3, Scm?1 could be achieved at room temperature. Based on the results of Scanning Electron Microscopy with X‐ray Analysis (SEM/EDS) investigations and wide‐angle X‐ray scattering and small‐angle X‐ray scattering studies, it could be anticipated that the reason for good conductivity of the films might be their specific supramolecular structure that potentially facilitated lithium ion mobility. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
14.
A blend of two biodegradable and semi‐crystalline polymers, poly (L‐lactic acid) (PLLA; 70 wt%) and poly (butylene succinate‐co‐L‐lactate) (PBSL; 30 wt%), was prepared in the presence of various polyethylene oxide‐polypropylene oxide‐polyethylene oxide (PEO‐PPO‐PEO) triblock copolymer contents (0.5, 1, 2 wt%). Mechanical, thermal properties, and Fourier transform infrared (FTIR) analysis of the blends were investigated. It was found that the addition of copolymer to PLLA/PBSL improved the fracture toughness of the blends as shown by mode I fracture energies. It was supported by morphological analysis where the brittle deformation behavior of PLLA changed to ductile deformation with the presence of elongated fibril structure in the blend with copolymer system. The glass transition temperature (Tg), melting temperature (Tm) of PLLA, and PBSL shift‐closed together indicated that some compatibility exists in the blends. In short, PEO‐PPO‐PEO could be used as compatibilizer to improve the toughness and compatibility of the PLLA/PBSL blends. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
15.
Xiu‐Zhen Wei Bao‐Ku Zhu Ling Xiao You‐Yi Xu Kurt E. Geckeler 《Macromolecular rapid communications》2005,26(15):1224-1227
Summary: Novel hyperbranched poly(amine‐ester) (HPAE) cross‐linked films were prepared by cross‐linking the terminal hydroxyl groups of HPAE using glutaraldehyde (GA). Atom force microscope and scanning electron microscope revealed their smooth surfaces, dense and homogenous matrices. Property characterizations indicated that these cross‐linked films had good hydrophilicity, relative low protein adsorption, and high tensile strength. Also, their swelling behavior varied with the solvent.
16.
Yan Liu Margaretha Sderqvist Lindblad Elisabetta Ranucci Ann‐Christine Albertsson 《Journal of polymer science. Part A, Polymer chemistry》2001,39(5):630-639
The physical and mechanical properties of aliphatic homopolyesters from monomers obtainable from renewable resources, namely, 1,3‐propanediol and succinic acid, were improved by their combination with aromatic urethane segments capable of establishing strong intermolecular hydrogen bonds. Segmented poly(ester‐urethane)s were synthesized from dihydroxy‐terminated oligo(propylene succinate)s chain‐extended with 4,4′‐diisophenylmethane diisocyanate. The newly synthesized materials were exhaustively characterized by 1H NMR spectroscopy, size exclusion chromatography, differential scanning calorimetry, dynamic mechanical analysis, and with respect to their main static mechanical properties, an Instron apparatus was used. The average repeat number of the hard segments, evaluated by NMR, ranged from 4 to 9, whereas that of the flexible segments was about 14. The degree of crystallinity, glass‐transition temperature, melting point, tensile strength, elongation, and Young's modulus were influenced by the ratio between hard and soft segments of the segmented copolymer in a predictable way. The results demonstrated that poly(ester‐urethane)s from 1,3‐propanediol and succinic acid are promising thermoplastics. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 630–639, 2001 相似文献
17.
Ana Luísa Daniel‐da‐Silva João Carlos Moura Bordado José Miguel Martín‐Martínez 《Journal of Polymer Science.Polymer Physics》2007,45(22):3034-3045
The degree of phase separation in several moisture‐cured poly(urethane urea)s (PUUs) was studied by FTIR spectroscopy, wide angle X‐ray diffraction (WAXD), and temperature‐modulated differential scanning calorimetry (TMDSC). This latter technique was shown to be particularly useful in analysing the degree of phase separation in PUU polymers. Both phase mixing and phase segregation coexisted in the PUUs and the degree of phase separation increased as the urea hard segment (HS) content in the PUU increased. The maximum solubility of urea HSs into the polyol soft segments (SSs) was achieved for 50 wt % urea HS content in diol‐based PUUs, whereas for triol‐based PUUs the highest solubility between HS and SS was reached for lower urea HS amount. Finally, the higher the urea HS content the higher the extent of phase separation in the PUU. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3034–3045, 2007 相似文献
18.
In this work, we synthesized two MDI-based polyurethanes, including a poly(ether)urethane (PEU) and a poly(carbonate)urethane (PCU), by using different soft segments, poly(tetramethylene oxide) and poly(hexyl, ethyl)carbonate diol (M approximately 2,000). We demonstrated that, in addition to the enhanced biostability of PCU over PEU, the biological performances of PCU in vitro were also improved in general. These included, better cellular attachment and proliferation, less platelet activation, as well as reduced monocyte activation. The unusual wide-ranging enhancement in biocompatibility for PCU was believed to be related to the larger micro-phase separation in PCU (approximately 25 nm) that caused distinct protein adsorption on the surface. The total number of adherent monocytes (nonactivated and activated) on the bare sample surfaces, albumin pre-adsorbed sample surfaces, and fibrinogen pre-adsorbed sample surfaces. 相似文献
19.
20.
Catherine Bianchi Bruno Grassl Bernard Franois Christine Dagron‐Lartigau 《Journal of polymer science. Part A, Polymer chemistry》2005,43(19):4337-4350
Water‐soluble and photoluminescent block copolymers [poly(ethylene oxide)‐block‐poly(p‐phenylene vinylene) (PEO‐b‐PPV)] were synthesized, in two steps, by the addition of α‐halo‐α′‐alkylsulfinyl‐p‐xylene from activated poly(ethylene oxide) (PEO) chains in tetrahydrofuran at 25 °C. This copolymerization, which was derived from the Vanderzande poly(p‐phenylene vinylene) (PPV) synthesis, led to partly converted PEO‐b‐PPV block copolymers mixed with unreacted PEO chains. The yield, length, and composition of these added sequences depended on the experimental conditions, namely, the order of reagent addition, the nature of the monomers, and the addition of an extra base. The addition of lithium tert‐butoxide increased the length of the PPV precursor sequence and reduced spontaneous conversion. The conversion into PPV could be achieved in a second step by a thermal treatment. A spectral analysis of the reactive medium and the composition of the resulting polymers revealed new evidence for an anionic mechanism of the copolymerization process under our experimental conditions. Moreover, the photoluminescence yields were strongly dependant on the conjugation length and on the solvent, with a maximum (70%) in tetrahydrofuran and a minimum (<1%) in water. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4337–4350, 2005 相似文献