首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of bis[amino­guanidinium(1+)] hexa­fluoro­zirconate(IV), (CH7N4)2[ZrF6], originally reported by Bukvetskii, Gerasimenko & Davidovich [Koord. Khim. (1990), 16 , 1479–1484], has been redetermined independently using two different samples. Normal probability analysis confirms the reliability of all refined parameter standard uncertainties in the new determinations, whereas systematic error detectable in the earlier work leads to a maximum difference of 0.069 (6) Å in atomic positions between the previously reported and present values of an F‐atom y coordinate. Radiation‐induced structural damage in amino­guanidinium poly­fluoro­zirconates may result from minor displacements of H atoms in weak N—H⋯F bonds to new potential minima and subsequent anionic realignment.  相似文献   

2.
In the asymmetric unit of the title compound, C10H15N4O2+·H2PO4, there are two protonated amino­guanidinium cations and two dihydrogenphosphate anions. The positive charge on the protonated amidine group is delocalized over the three C—N bonds in a manner similar to that found in guanidinium salts. The amino­guanidinium cations are found to be the E‐isomer structures. Intra­molecular inter­actions of the N—H⋯N type are observed, leading to the formation of five‐membered rings. Extensive networks of O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds stabilize the three‐dimensional network. In the crystal structure, π–π inter­actions between the benzene rings, with a distance of 3.778 (2) Å between the ring centroids, also affect the packing of the mol­ecules.  相似文献   

3.
The crystal structure of bis­(benzyl­ammonium) hexa­chloro­tin(IV), (C7H7NH3)2[SnCl6], exhibits ionic layers separated by hydro­carbon layers. The hydro­carbon layer contains two crystallographically inequivalent benzyl groups and aromatic π–π stacking interactions are observed in this layer. In the inorganic layer, the ammonium groups interact with isolated tilted [SnCl6]2− octahedra through normal, bifurcated and trifurcated N—H⋯Cl hydrogen bonds.  相似文献   

4.
The factors influencing the distortion of inorganic anions in the structures of chloridoantimonates(III) with organic cations, in spite of numerous structural studies on those compounds, have not been clearly described and separated. The title compound, [(C2H5)2NH2]3[SbCl6], consisting of isolated distorted [SbCl6]3− octahedra that have C3 symmetry and [(C2H5)2NH2]+ cations, unequivocally shows the role played by hydrogen bonding in the geometry variations of inorganic anions. The organic cations, which are linked to the inorganic substructure through N—H...Cl hydrogen bonds, are clearly responsible for the distortion of the octahedral coordination of SbIII in terms of differences (Δ) in both Sb—Cl bond lengths [Δ = 0.4667 (6) Å] and Cl—Sb—Cl angles [Δ = 9.651 (17)°].  相似文献   

5.
The crystal structures of the four isomeric organic salts 4‐amino­pyridinium 2‐chloro‐4‐nitro­benzoate, (I), 4‐amino­pyridinium 2‐chloro‐5‐nitro­benzoate, (II), 4‐amino­pyridinium 5‐chloro‐2‐nitro­benzoate, (III), and 4‐amino­pyridinium 4‐chloro‐2‐nitro­benzoate, (IV), all C5H7N2+·C7H3ClNO4?, are presented. Compound (I) has one intramolecular hydrogen bond, one intermolecular C—H?O hydrogen bond and π–π‐stacking interactions. Compound (II) has N—H?O, C—H?O and C—H?Cl hydrogen bonds, and Cl?O—C electrostatic interactions. Compound (III) has N—H?O and C—H?O hydrogen bonds. Compound (IV) has a π–π‐stacking interaction, but no C—H?O hydrogen bonds.  相似文献   

6.
Nalidixium tetrachloroantimonate monohydrate, (C12H13N2O3)SbCl4 · H2O, has been synthesized and its crystal structure has been determined. The structure is built of the [Sb2Cl8]2? anions, C12H13N2O 3 + nalidixium cations, and H2O molecules joint by hydrogen bonds and π-π-and Cl?Cl interactions. The [Sb2Cl8]2? anion is a dimer of the SbCl5 E distorted octahedra sharing common Cl?Cl edge (E is the lone electron pair). The Sb polyhedra contain two short Sb-Cl bonds (2.387 and 2.395 Å), one bond of a medium length (2.508 Å), and two long bridging bonds (2.745 and 3.054 Å).  相似文献   

7.
The asymmetric unit of the title compound consists of two crystallographically independent, but structurally identical, [HP2Mo5O23]5− anions, ten guanidinium cations and five water molecules. Each singly protonated diphosphopentamolybdate(VI) anion retains the typical geometry of a ring of five edge‐sharing MoO6 octahedra [Mo...Mo = 3.3265 (8)–3.4029 (10) Å], except for one corner‐sharing link [Mo...Mo = 3.6642 (7) and 3.6826 (8) Å]. Two capping PO4 tetrahedra share corners with the five octahedra. Despite being surrounded by an extensive network of hydrogen bonds, predominantly from the guanidinium cations, short P—O—H...O=P contacts [O...O = 2.519 (7) and 2.457 (7) Å] associate the anions into infinite columns generated by the c‐glide. In addition to their heavy involvement in hydrogen bonding, with all N—H donors being utilized, the guanidinium cations assemble into extensive π‐stacked columns with an average interplanar spacing of 3.53 Å.  相似文献   

8.
In the title compound, [Fe(C5H5)2]2[SbCl4]2[SbCl3], the cyclo­penta­dienyl rings in both cations are parallel, with a nearly eclipsed conformation. The Sb3+ ions are coordinated by six Cl? ions to form octahedral arrangements, of which two are slightly distorted. These octahedra form infinite chains along the c axis through Cl—Sb—Cl bridges.  相似文献   

9.
The structure of the title compound, [TeCl4(C5H10N2S)2] or C10H20Cl4N4S2Te, has been solved in order to study the stereochemical activity of the lone pair of electrons on TeIV. The two crystallographically independent mol­ecules in the asymmetric unit both show a distorted octahedral coordination of the Te atom. The two Te—S bonds are trans to each other in both mol­ecules and are greatly asymmetric, with bond lengths of 2.5686 (7) versus 2.8557 (8) Å and 2.5859 (7) versus 2.8165 (9) Å. The Te—Cl bond lengths lie in the range 2.5236 (7)–2.5589 (8) Å. The asymmetric Te—S bonds and a large S—Te—Cl angle of ca 97° involving the long Te—S bonds indicate stereochemical activity of the lone pair of electrons on Te.  相似文献   

10.
In the title compound, C4H12N22+·2C8H7O3?·2CH4O, the cations lie across centres of inversion and are disordered over two orientations with equal occupancy; there are equal numbers of (R)‐ and (S)‐mandelate anions present (mandelate is α‐hydroxy­benzene­acetate). The anions and the neutral water mol­ecules are linked by O—H?O hydrogen bonds [O?O 2.658 (3) and 2.682 (3) Å, and O—H?O 176 and 166°] into deeply folded zigzag chains. Each orientation of the cation forms two symmetry‐related two‐centre N—H?O hydrogen bonds [N?O 2.588 (4) and 2.678 (4) Å, and N—H?O 177 and 171°] and two asymmetric, but planar, three‐centre N—H?(O)2 hydrogen bonds [N?O 2.686 (4)–3.137 (4) Å and N—H?O 137–147°], and by means of these the cations link the anion/water chains into bilayers.  相似文献   

11.
Crystals of the title π‐complex, [Cu4Cl6(C8H11N2)2]n, were obtained by means of alternating‐current electrochemical synthesis. The structure consists of infinite copper–chlorine chains to which 1‐allyl‐3‐amino­pyridinium moieties are attached via a η2 Cu—(C=C) interaction. The two independent Cu atoms have distinct coordination environments. One is three‐coordinate, surrounded by two chloro ligands and the olefinic bond, whereas the second copper center is surrounded by a tetrahedral arrangement of four Cl atoms. The lower basicity of 3‐amino­pyridine as compared with 2‐ and 4‐amino­pyridine lowers the capacity of the organic ligand for donating to N—H⋯Cl hydrogen bonds and results in the formation of a large inorganic fragment.  相似文献   

12.
The title compound, (S)‐(+)‐4‐[5‐(2‐oxo‐4,5‐di­hydro­imidazol‐1‐yl­sulfonyl)­indolin‐1‐yl­carbonyl]­anilinium chloride (S)‐(+)‐1‐[1‐(4‐amino­benzoyl)­indoline‐5‐sulfonyl]‐4‐phenyl‐4,5‐di­hydro­imidazol‐2‐one, C24H23N4O4S+·Cl?·C24H22N4O4S, crystallizes in space group C2 from a CH3OH/CH2Cl2 solution. In the crystal structure, there are two different conformers with their terminal C6 aromatic rings mutually oriented at angles of 67.69 (14) and 61.16 (15)°. The distances of the terminal N atoms (of the two conformers) from the chloride ion are 3.110 (4) and 3.502 (4) Å. There are eight distinct hydrogen bonds, i.e. four N—H?Cl, three N—H?O and one N—H?N, with one N—H group involved in a bifurcated hydrogen bond with two acceptors sharing the H atom. C—H?O contacts assist in the overall hydrogen‐bonding process.  相似文献   

13.
In the crystal structure of the title compound, [N,N′‐bis(3‐­amino­propyl)­ethyl­enedi­amine‐κ4N,N′,N′′,N′′′][1,3,5‐triazine‐2,4,6(1H,3H,5H)‐tri­thionato(2−)‐κ2N,S]­zinc(II) ethanol sol­vate, [Zn(C8H22N4)2(C3HN3S3)]·C2H6O, the ZnII atom is octa­hedrally coordinated by four N atoms [Zn—N = 2.104 (2)–2.203 (2) Å] of a tetradentate N‐donor N,N′‐bis(3‐­amino­propyl)­ethyl­enedi­amine (bapen) ligand and by two S and N atoms [Zn—S = 2.5700 (7) Å and Zn—N = 2.313 (2) Å] of a tri­thio­cyanurate(2−) (ttcH2−) dianion bonded as a bidentate ligand in a cis configuration. The crystal structure of the compound is stabilized by a network of hydrogen bonds.  相似文献   

14.
In the title compound, [RuCl2(C2H3N)(C27H31N3)]·0.5CH2Cl2, the RuII ion is six‐coordinated in a distorted octa­hedral arrangement, with the two Cl atoms located in the apical positions, and the pyridine (py) N atom, the two imino N atoms and the acetonitrile N atom located in the basal plane. The dichloromethane solvent mol­ecule lies on a twofold axis. The two equatorial Ru—Nimino distances are almost equal (mean 2.089 Å) and are substantially longer than the equatorial Ru—Npy bond [1.914 (4) Å]. It is observed that the NiminoM—Npy bond angle for the five‐membered chelate rings of pyridine‐2,6‐diimine complexes is inversely related to the magnitude of the M—Npy bond. The title structure is stabilized by intra‐ and inter­molecular C—H⋯Cl hydrogen bonds. The inter­molecular hydrogen bonds form an R66(24) ring and a chain of edge‐fused rings running parallel to the [001] direction.  相似文献   

15.
The crystal structure of the title compound, C2H10N2O2+·2Cl, is built up from one 2‐hydroxy­ethyl­hydrazinium(2+) cation and two Cl anions. The mol­ecular structure is stabilized by O—H⋯Cl and N—H⋯Cl hydrogen bonds. The crystal structure is stabilized by one N—H⋯O and three N—H⋯Cl inter­actions, and the three‐dimensional network of hydrogen bonds stabilizes the crystal packing. All five hydrazinium H atoms are involved in hydrogen bonds to Cl anions. The Cl⋯H contact distances range from 2.122 (15) to 2.809 (14) Å.  相似文献   

16.
Molecules of the title compound, [PdCl(C6H4NO2S)(PPh3)2]·­C3H6O, exhibit a slight distortion from exact planarity at the Pd atom towards tetrahedral, with P—Pd—P and Cl—Pd—S angles of 174.98 (3) and 174.19 (3)°, respectively. The Pd—Cl and Pd—S bonds are, respectively, long [2.3550 (11) Å] and short [2.3020 (12) Å] for their types; the S—C bond is also very short [1.744 (4) Å]. The solvating acetone mol­ecule is linked to one of the phosphine ligands by means of a C—H?O hydrogen bond.  相似文献   

17.
The crystal structure of catena‐poly­[[tri‐n‐butyl­tin]‐μ‐3‐(1‐naph­thyl­amino­carbonyl)­acrylato‐κ2O1:O3], [Sn(C4H9)3(C14H10NO3)]n, is composed of polymeric chains wherein the metal center exhibits a distorted trigonal‐bipyramidal geometry, with three n‐butyl groups defining the trigonal plane [mean Sn—C 2.133 (7) Å] and the axial positions being occupied by the carboxyl­ate O atoms of two different N‐(1‐naphthyl)­maleamate ligands with inequivalent Sn—O distances [2.167 (4) and 2.457 (4) Å]. The N‐(1‐naphthyl)­maleamate fragment forms an essentially planar seven‐membered ring involving an intramolecular N—H?O hydrogen bond.  相似文献   

18.
The adduct 1,6‐di­amino­hexane–1,1,1‐tris(4‐hydroxy­phenyl)­ethane (1/2) is a salt {hexane‐1,6‐diyldiammonium–4‐[1,1‐bis(4‐hydroxyphenyl)ethyl]phenolate (1/2)}, C6H18N22+·2C20H17O3?, in which the cation lies across a centre of inversion in space group P. The anions are linked by two short O—H?O hydrogen bonds [H?O 1.74 and 1.76 Å, O?O 2.5702 (12) and 2.5855 (12) Å, and O—H?O 168 and 169°] into a chain containing two types of R(24) ring. Each cation is linked to four different anion chains by three N—H?O hydrogen bonds [H?O 1.76–2.06 Å, N?O 2.6749 (14)–2.9159 (14) Å and N—H?O 156–172°]. In the adduct 2,2′‐bipyridyl–1,1,1‐tris(4‐hydroxy­phenyl)­ethane (1/2), C10H8N2·2C20H18O3, the neutral di­amine lies across a centre of inversion in space group P21/n. The tris­(phenol) mol­ecules are linked by two O—H?O hydrogen bonds [H?O both 1.90 Å, O?O 2.7303 (14) and 2.7415 (15) Å, and O—H?O 173 and 176°] into sheets built from R(38) rings. Pairs of tris­(phenol) sheets are linked via the di­amine by means of a single O—H?N hydrogen bond [H?N 1.97 Å, O?N 2.7833 (16) Å and O—H?N 163°].  相似文献   

19.
The title compound, [Cu2(C4H12N2)2{Ag(CN)2}4(NH3)]·2H2O or [Ag4Cu2(CN)8(C4H12N2)2(NH3)]·2H2O, contains two crystallographically different CuII atoms lying on twofold axes. The first Cu atom is hexacoordinated in the form of an elongated tetragonal bipyramid and is part of a plane in which Cu atoms are connected by two bridging di­amino­butane mol­ecules [Cu—N = 2.033 (4) Å] and two di­cyano­argentate anions [Cu—N = 2.622 (6) Å]. The ammine ligand stands perpendicular to this plane [Cu—N = 2.011 (6) Å] in a trans position to it. Another [Ag(CN)2] anion connects the hexacoordinated Cu atom [Cu—N = 1.997 (8) Å] with the second Cu atom [Cu—N = 2.026 (7) Å], which is pentacoordinated in the form of a slightly distorted trigonal bipyramid by two monodentate di­cyano­argetate anions [Cu—N = 2.040 (5) Å]. The axial positions are occupied by two bridging di­amino­butane mol­ecules [Cu—N = 2.011 (4) Å] that connect the Cu atoms into chains parallel to the above plane. The water mol­ecules remain uncoordinated and thus a unique combination of two‐ and one‐dimensional structures is formed.  相似文献   

20.
In the crystal structure of the title compound, [Zn(C4H13N3)2]2[Fe(CN)6]·4H2O, the asymmetric unit is formed by a [Zn(dien)2]2+ cation (dien = diethyl­enetri­amine, NH2CH2CH2NHCH2CH2NH2), water mol­ecules and half of the [Fe(CN)6]4? anion which is related by inversion symmetry through the Fe atom. The geometry around the Zn and Fe atoms is distorted octahedral and octahedral, respectively. Intramolecular O—H?O hydrogen bonds involving the water mol­ecules, and intermolecular O—H?N hydrogen bonds involving the water mol­ecules and the anions, result in an infinite chain. Intramolecular O—H?O and N—H?N, and intermolecular O—H?N, N—H?O and N—H?N hydrogen bonds form a three‐dimensional framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号