首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of crosslinked poly(styrene‐co‐4‐vinylpyridine) having functional groups as the support for zirconocene catalysts in ethylene polymerization was studied. Several factors affecting the activity of the catalysts were examined. Conditions like time, temperature, Al/N (molar ratio), Al/Zr (molar ratio), and the mode of feeding were found having no significant influence on the activity of the catalysts, while the state of the supports had a great effect on the catalytic behavior. The activity of the catalysts sharply increased with either the degree of crosslinking or the content of 4‐vinylpyridine in the support. Via aluminum compounds, AlR3 or methylaluminoxane (MAO), zirconocene was attached on the surface of the support. IR spectra showed an intensified and shifted absorption bands of C N in the pyridine ring, and a new absorption band appeared at about 730 cm−1 indicating a stable bond Al N formed in the polymer‐supported catalysts. The formation of cationic active centers was hypothesized and the performance of the polymer‐supported zirconocene was discussed as well. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 37–46, 1999  相似文献   

2.
Bis(cyclopentadienyl)zirconocene dimethyl (Cp2ZrMe2) combined with triphenylcarbenium tetrakis(pentafluorophenyl)borate ([Ph3C][B(C6F5)4]) was brought into contact with a suspension of 2% cross‐linked poly(4‐vinylpyridine) to give a new type of polymer‐supported cationic zirconocene catalyst. The resulting polymer‐supported catalyst system combined with Al(i‐Bu3) showed markedly high activity for ethylene polymerization in even a non‐polar solvent like hexane at 25–60°C and [Al]/[Zr] molar ratio 40–200. By the analysis of Zr content of the hexane solution, it was found that no Zr was detected in the solution, i. e. no leaching of the cationic catalyst into the hexane medium. The catalytic activity was found to increase with an increase of polymerization temperature and showed the highest at [Al]/[Zr] = 100. The molecular weight, crystalline melting temperature, crystallinity, and bulk density of polyethylene formed were higher than those of the polymer obtained from the homogeneous system.  相似文献   

3.
Through the Diels–Alder reaction between cyclopentadiene groups attached to polystyrene in the presence of zirconocene, novel polystyrene‐supported metallocene catalysts were prepared. A novel method for immobilizing metallocene catalysts was investigated, and the resultant polystyrene‐supported metallocene for olefin polymerization was studied. The results of olefin polymerization showed that different crosslinking degrees of support in the catalyst system had significant effects on the catalytic behavior. The influence of the [Al]/[Zr] molar ratio and the temperature on the (co)polymerization activity was studied. When 1‐hexene and 1‐dodecene were used for copolymerization with ethylene, an obvious positive comonomer effect was observed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2650–2656, 2005  相似文献   

4.
The effects of polymerization temperature, polymerization time, ethylene and hydrogen concentration, and effect of comonomers (hexene‐1, propylene) on the activity of supported catalyst of composition LFeCl2/MgCl2‐Al(i‐Bu)3 (L = 2,6‐bis[1‐(2,6‐dimethylphenylimino)ethyl] pyridyl) and polymer characteristics (molecular weight (MW), molecular‐weight distribution (MWD), molecular structure) have been studied. Effective activation energy of ethylene polymerization over LFeCl2/MgCl2‐Al(i‐Bu)3 has a value typical of supported Ziegler–Natta catalysts (11.9 kcal/mol). The polymerization reaction is of the first order with respect to monomer at the ethylene concentration >0.2 mol/L. Addition of small amounts of hydrogen (9–17%) significantly increases the activity; however, further increase in hydrogen concentration decreases the activity. The IRS and DSC analysis of PE indicates that catalyst LFeCl2/MgCl2‐Al(i‐Bu)3 has a very low copolymerizing ability toward propylene and hexene‐1. MW and MWD of PE produced over these catalysts depend on the polymerization time, ethylene and hexene‐1 concentration. The activation effect of hydrogen and other kinetic features of ethylene polymerization over supported catalysts based on the Fe (II) complexes are discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5057–5066, 2007  相似文献   

5.
In this work, an octadecylamine‐modified graphene oxide (ODA‐GO)‐MgCl‐supported Ziegler–Natta catalyst was synthesized by reacting ODA‐GO with a Grignard reagent, followed by anchoring TiCl4 to the structure. The effect of the ODA‐GO on the catalyst morphology and ethylene polymerization behavior was examined. The resultant polyethylene (PE)/ODA‐GO nanocomposites directly mirrored the catalyst morphology by forming a layered morphology, and the ODA‐GO fillers were well dispersed in the PE matrix and showed strong interfacial adhesion with it. The resultant PE/ODA‐GO nanocomposites exhibited better thermal stability and mechanical properties than neat PE, even with a small amount of ODA‐GO added. Thus, this work provides a facile approach to the production of high‐performance PE. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 855–860  相似文献   

6.
A novel approach to the preparation of polyethylene (PE) nanocomposites, with montmorillonite/silica hybrid (MT‐Si) supported catalyst, was developed. MT‐Si was prepared by depositing silica nanoparticles between galleries of the MT. A common zirconocene catalyst [bis(cyclopentadienyl)zirconium dichloride/methylaluminoxane] was fixed on the MT‐Si surface by a simple method. After ethylene polymerization, two classes of nanofillers (clay layers and silica nanoparticles) were dispersed concurrently in the PE matrix and PE/clay–silica nanocomposites were obtained. Exfoliation of the clay layers and dispersion of the silica nanoparticles were examined with transmission electron microscopy. Physical properties of the nanocomposites were characterized by tensile tests, dynamic mechanical analysis, and DSC. The nanocomposites with a low nanofiller loading (<10 wt %) exhibited good mechanical properties. The nanocomposite powder produced with the supported catalyst had a granular morphology and a high bulk density, typical of a heterogeneous catalyst system. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 941–949, 2004  相似文献   

7.
An investigation of the polymer particle growth characteristics and polymer molecular weight and composition distributions in ethylene homopolymerization and ethylene/1‐hexene copolymerization has been carried out with a catalyst comprising a zirconocene and methylaluminoxane immobilized on a silica support. The presence of 1‐hexene leads to higher productivity and easier fragmentation of the support during particle growth. Crystallization analysis fractionation and gel permeation chromatography analysis of ethylene/1‐hexene copolymers prepared at different polymerization times reveals a broadening of the chemical composition distribution with increasing polymerization time as a result of the gradual formation of a relatively high‐molecular‐weight, ethylene‐rich fraction. The results are indicative of significant monomer diffusion effects in both homopolymerization and copolymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2883–2890, 2006  相似文献   

8.
Macroporous functionalized polymer beads of poly(4‐vinylpyridine‐co‐1,4‐divinylbenzene) [P(VPy‐co‐DVB)] were prepared by a multistep polymerization, including a polystyrene (PS) shape template by emulsifier‐free emulsion polymerization, linear PS seeds by staged template suspension polymerization, and macroporous functionalized polymer beads of P(VPy‐co‐DVB) by multistep seeded polymerization. The polymer beads, having a cellular texture, were made of many small, spherical particles. The bead size was 10–50 μm, and the pore size was 0.1–1.5 μm. The polymer beads were used as supports for zirconocene catalysts in ethylene polymerization. They were very different from traditional polymer supports. The polymer beads could be exfoliated to yield many spherical particles dispersed in the resulting polyethylene particles during ethylene polymerization. The influence of the polymer beads on the catalytic behavior of the supported catalyst and morphology of the resulting polyethylene was investigated. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 873–880, 2003  相似文献   

9.
A series of novel nonmetallocene catalysts with phenoxy‐imine ligands was synthesized by the treatment of phthaldialdehyde, substituted phenol with TiCl4, ZrCl4, and YCl3 in THF. The structures and properties of the catalysts were characterized by 1H NMR and elemental analysis. These catalysts were used for copolymerization of ethylene with acrylonitrile after activated by methylaluminoxane (MAO). The effects of copolymerization temperature, Al/M (M = Ti, Zr, and Y) ratio in mole, concentrations of catalyst and comonomer on the polymerization behaviors were investigated in detail. These results revealed that these catalysts were favorable for copolymerization of ethylene with acrylonitrile. Cat. 3 was the most favorable one for the copolymerization of ethylene with acrylonitrile, and the catalytic activity was up to 2.19 × 104 g PE/mol.Ti.h under the conditions: polymerization temperature of 50 °C, Al/Ti molar ratio of 300, catalyst concentration of 1.0 × 10–4 mol/L, and toluene as solvent. The resultant polymer was characterized by FTIR, cross‐polarization magic angle spinning, 13C NMR, WAXD, GPC, and DSC. The results confirmed that the obtained copolymer featured high‐weight–average molecular weight, narrow molecular weight distribution about 1.61–1.95, and high‐acrylonitrile incorporation up to 2.29 mol %. Melting temperature of the copolymer depended on the content of acrylonitrile incorporation within the copolymer chain. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
The catalyst DADNi(NCS)2 (DAD = (ArN?C(Me)? C(Me)?ArN); Ar = 2,6‐C6H3), activated by methylaluminoxane, was tested in ethylene polymerization at temperatures above 25 °C and variable Al/Ni ratio. The system was shown to be active even at 80 °C and when supported on silica. However, catalyst activity decreased. The catalyst system was also tested in ethylene and 10‐undecen‐1‐ol copolymerization at different ethylene pressures. The best activities were obtained at low polar monomer concentration (0.017 mol/L), using triisopropylaluminum (Al‐i‐Pr3) to protect the polar monomer. The incorporation of the comonomer increased with the increase of polar monomer concentration. According to 13C NMR analyses, all the resulting polyethylenes were highly branched and the polar monomer incorporation decreased as ethylene pressure increased. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5199–5208, 2007  相似文献   

11.
The Ziegler–Natta‐catalyzed polymerization of 1,3‐butadiene was investigated at a low aluminum alkyl/cobalt (Al/Co) ratio using two different soluble catalyst systems: cobalt(II) octanoate/diethylaluminum chloride/water and cobalt(II) octanoate/methylaluminoxane/tert‐butyl chloride. When the active‐center concentration was determined by the number‐average molecular weight technique, it was found that the percentage of active cobalt depended on the Al/Co ratio. Subsequently, an equilibrium reaction was proposed to be Co + 2Al ? CoAl2, where Co is cobalt(II) octanoate, Al is either of the aluminum alkyl‐activator species, and CoAl2 is the active catalyst. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2256–2261, 2001  相似文献   

12.
N‐Arylcyano‐β‐diketiminate methallyl nickel complexes activated with B(C6F5)3 were used in the polymerization of ethylene. The microstructure analysis of obtained polyethylene (PE) was done by differential scanning calorimetry and 13C nuclear magnetic resonance (NMR). The branched polymer structures produced by these catalysts were attributed to one step isomerization mechanism of the catalyst along the polymer chain. The ortho or para position of the cyano group with co‐ordinated B(C6F5)3 in both methallyl nickel catalysts influenced the polymer molecular weight, branching, and consequently melting and crystallization temperatures. NMR spectroscopic studies showed predominantly the formation of methyl branches in the obtained PE. Catalysts under study gave linear low‐density PEs with good crystallinities at temperatures of reaction between 50 °C and 70 °C at moderate pressures (12.3 atm). A propylene–ethylene copolymer produced by the metallocene catalyst had the same concentration of branches as the PE synthesized from methallyl nickel/B(C6F5)3. Comparing the two polyolefins with the same degree of branching, it was observed that the polymer obtained with the nickel catalyst proved to be twice more crystalline and had greater Tm. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 452–458  相似文献   

13.
The copolymerizations of ethylene and cyclopentene with bis(β‐enaminoketonato) titanium complexes {[(Ph)NC(R2)CHC(R1)O]2TiCl2; R1 = CF3 and R2 = CH3 for 1a , R1 = Ph and R2 = CF3 for 1b ; and R1 = t‐Bu and R2 = CF3 for 1c } activated with modified methylaluminoxane (MMAO) as a cocatalyst were investigated. High‐molecular‐weight copolymers with cis‐1,2‐cyclopentene units were obtained. The catalyst activity, cyclopentene incorporation, polymer molecular weight, and polydispersity could be controlled over a wide range through the variation of the catalyst structure and reaction parameters, such as the Al/Ti molar ratio, cyclopentene feed concentration, and polymerization reaction temperature. The complex 1b /MMAO catalyst system exhibited the characteristics of a quasi‐living ethylene polymerization and an ethylene–cyclopentene copolymerization and allowed the synthesis of polyethylene‐block‐poly(ethylene‐co‐cyclopentene) diblock copolymer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1681–1689, 2005  相似文献   

14.
Highly filled polyethylene (PE)‐based nanocomposites were obtained by insitu polymerization technique. An organically modified montmorillonite, Cloisite® 15A (C15A), was previously treated with methylaluminoxane (MAO) to form a supported cocatalyst (C15A/MAO) before being contacted with a zirconocene catalyst. The main features of C15A/MAO intermediates were studied by elemental analysis, TGA, TGA‐FTIR, WAXD, and TEM. MAO reacts with the clay, replaces most of the organic surfactant within the clay galleries and destroys the typical crystrallographic order of the nanoclay. The catalytic activity in the presence of C15A/MAO is higher than in ethylene polymerization without any inorganic filler and increases with MAO supportation time. This indicates that part of the polymer chains grows within the clay galleries, separates them, and makes it possible to tune the final morphology of the composites. The polymerization results and the influence of C15A pretreatment and polymerization conditions on thermal and morphological properties of the hybrid PE/C15A nanocomposites are presented. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5390–5403, 2008  相似文献   

15.
The polymerization of butadiene (Bd) with Co(acac)3 in combination with methylaluminoxane (MAO) was investigated. The polymerization of Bd with Co(acac)3‐MAO catalysts proceeded to give cis‐1,4 polymers (94 – 97%) bearing high molecular weights (40 × 104) with relatively narrow molecular weight distributions (Mw's/Mn's). The molecular weight of the polymers increased linearly with the polymer yield, and the line passed through an original point. The polydispersities of the polymers kept almost constant during reaction time. This indicates that the microstructure and molecular weight of the polymers can be controlled in the polymerization of Bd with the Co(acac)3‐MAO catalyst. The effects of reaction temperature, Bd concentration, and the MAO/Co molar ratio on the cis‐1,4 microstructure and high molecular weight polymer in the polymerization of Bd with Co(acac)3‐MAO catalyst were observed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2793–2798, 2001  相似文献   

16.
Poly(propylene‐ran‐1,3‐butadiene) was synthesized using isospecific zirconocene catalysts and converted to telechelic isotactic polypropylene by metathesis degradation with ethylene. The copolymers obtained with isospecific C2‐symmetric zirconocene catalysts activated with modified methylaluminoxane (MMAO) had 1,4‐inserted butadiene units ( 1,4‐BD ) and 1,2‐inserted units ( 1,2‐BD ) in the isotactic polypropylene chain. The selectivity of butadiene towards 1,4‐BD incorporation was high up to 95% using rac‐dimethylsilylbis(1‐indenyl)zirconium dichloride (Cat‐A)/MMAO. The molar ratio of propylene to butadiene in the feed regulated the number‐average molecular weight (Mn) and the butadiene contents of the polymer produced. Metathesis degradations of the copolymer with ethylene were conducted with a WCI6/SnMe4/propyl acetate catalyst system. The 1H NMR spectra before and after the degradation indicated that the polymers degraded by ethylene had vinyl groups at both chain ends in high selectivity. The analysis of the chain scission products clarified the chain end structures of the poly(propylene‐ran‐1,3‐butadiene). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5731–5740, 2007  相似文献   

17.
Through immobilization of two iron‐based complexes, [((2,6‐MePh)N = C(Me))2C5H3N]FeCl2 ( 1 ) and [((2,6‐iPrPh)N = C(Me))2C5H3N]FeCl2 ( 2 ), on SiO2 pretreated with tetraethylaluminoxane (TEAO), two supported iron‐based catalysts, 1 /TEAO/SiO2 ( 3 ) and 2 /TEAO/SiO2 ( 4 ), were prepared. These two supported catalysts 3 and 4 could be used to catalyze ethylene polymerization with moderate polymerization activity and prepare linear high‐density polyethylene with bimodal molecular weight distribution (MWD). It was demonstrated that immobilization of catalyst could significantly improve molecular weight (MW) of high‐MW fraction of the resultant polyethylene, as well as maintain bimodal MWD of polyethylene produced by the corresponding homogeneous catalysts. Such bimodal MWD of polyethylene produced by supported iron‐based catalysts could be well tailored by varying polymerization conditions, such as ethylene pressure and molar ratio of Al to Fe. It has been proven that TEAO is an efficient activator for both homogeneous and heterogeneous iron‐based catalysts for producing polyethylene with bimodal MWD. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5662–5669, 2004  相似文献   

18.
Copolymerizations of ethylene and α‐olefin with various zirconocene compounds at a high temperature were carried out to study the relationship between the ligand structure of zirconocene compounds and the copolymerization behavior. All of the indenyl‐based zirconocene compounds in combination with dimethylanilinium tetrakis(pentafluorophenyl)borate/triisobutylaluminum produced only low molecular weight copolymers at a high temperature, regardless of the substituents and bridged structures of the zirconocene compounds. However, zirconocene compounds with a fluorenyl ligand gave rise to a significant increase in the activity and molecular weight of the copolymers by the selection of a diphenylmethylene bridge structure even at a high temperature. Ethylene/1‐hexene copolymers obtained with the fluorenyl‐based catalysts contained inner double bonds accompanied by the generation of hydrogen, presumably because of a C H bond activation mechanism. The contents of the inner double bonds were significantly influenced by the polymerization conditions, including the 1‐hexene feed content, polymerization temperature, and ethylene pressure. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4641–4648, 2000  相似文献   

19.
Polyethylene‐block‐poly(methyl methacrylate) (PE‐b‐PMMA) was successfully synthesized through the combination of metallocene catalysis with living radical polymerization. Terminally hydroxylated polyethylene, prepared by ethylene/allyl alcohol copolymerization with a specific zirconium metallocene/methylaluminoxane/triethylaluminum catalyst system, was treated with 2‐bromoisobutyryl bromide to produce terminally esterified polyethylene (PE‐Br). With the resulting PE‐Br as an initiator for transition‐metal‐mediated living radical polymerization, methyl methacrylate polymerization was subsequently performed with CuBr or RuCl2(PPh3)3 as a catalyst. Then, PE‐b‐PMMA block copolymers of different poly(methyl methacrylate) (PMMA) contents were prepared. Transmission electron microscopy of the obtained block copolymers revealed unique morphological features that depended on the content of the PMMA segment. The block copolymer possessing 75 wt % PMMA contained 50–100‐nm spherical polyethylene lamellae uniformly dispersed in the PMMA matrix. Moreover, the PE‐b‐PMMA block copolymers effectively compatibilized homopolyethylene and homo‐PMMA at a nanometer level. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3965–3973, 2003  相似文献   

20.
The copolymerization of propylene with 1‐hexene, 1‐octene, 1‐decene, and 1‐dodecene was carried out with silica‐supported rac‐Me2Si(Ind)2ZrCl2 as a catalyst. The copolymerization activities of the homogeneous and supported catalysts and the microstructures of the resulting copolymers were compared. The activity of the supported catalyst was only one‐half to one‐eighth of that of the homogeneous catalyst, depending on the comonomer type. The supported catalyst copolymerized more comonomer into the polymer chain than the homogeneous catalyst at the same monomer feed ratio. Data of reactivity ratios showed that the depression in the activity of propylene instead of an enhancement in the activity of olefinic comonomer was responsible for this phenomenon. We also found that copolymerization with α‐olefins and supporting the metallocene on a carrier improved the stereoregularity and regioregularity of the copolymers. The melting temperature of all the copolymers decreased linearly with growing comonomer content, regardless of the comonomer type and catalyst system. Low mobility of the propagation chain in the supported catalyst was suggested as the reason for the different polymerization behaviors of the supported catalyst with the homogeneous system. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3294–3303, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号