首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This article carries the objectives of our current acrylamide copolymer project further by examining the synthesis, characterization, and testing of a series of poly(methacrylamide‐co‐acrylamide)s and some homopolymer control products. These are characterized by traditional Fourier transform photoacoustic infrared, 13C NMR, and elemental analysis. A composite picture of the hydrodynamic volumes of the high molecular weight products was then obtained by a series of viscometric, gel permeation chromatographic, and multiangle laser light scattering methods. These give a good quantitative picture of the effect of the introduction of the backbone methyl group on the hydrodynamic volumes of the copolymer products. Yields were generally greater than 60%. The copolymer products generally had lower molecular weights than those obtained from the control polyacrylamide preparations. Copolymer samples with comparable molecular weights did have larger radii of gyration and intrinsic viscosities than samples of control polyacrylamides. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3146–3160, 2000  相似文献   

2.
This article describes the first of a new series of preparations of water‐soluble acrylamide, substituted acrylamide copolymers and related homopolymers. Objectives of this work were to measure the progressive influence on the hydrodynamic volume and other properties contributed by incorporation of N,N‐dimethylacrylamide (DMA) into a series of high molecular weight acrylamide copolymers. Traditional photoacoustic Fourier transform infrared, 13C NMR, and elemental analysis were used for primary characterization. A series of tests using viscometric, gel permeation, chromatographic, and multiangle laser light scattering methods were then used to measure the hydrodynamic volumes of the products. Copolymers incorporating 14, 23, 43, and 63 mol percent DMA with molecular weights of greater than 5 × 106 g/mol were obtained with yields of better than 70%. Aqueous solutions of these polymers showed little or no decrease in radii of gyration or intrinsic viscosity when low concentrations of sodium chloride were added, in contrast to its effect on solutions of polyacrylamide itself. For the copolymers, higher values were obtained for < rg > and [η], than were observed for acrylamide homopolymers of comparable molecular weight. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3128–3145, 2000  相似文献   

3.
Fifteen samples of sodium poly(styrene sulfonate) with weight‐average molecular weights of 3 × 104 to 8 × 105 have been studied by static and dynamic light scattering and viscometry in 0.05 and 0.5 M aqueous NaCl at 25 °C. The measured radii of gyration, translational diffusion coefficients, and intrinsic viscosities at the lower salt concentration exhibit molecular weight dependencies stronger than those predictable for uncharged flexible chains in the good solvent limit. These data and those at the higher NaCl concentration are analyzed, along with previous intrinsic viscosity data covering a broad molecular weight range, in the framework of the quasi‐two‐parameter (QTP) theory with the wormlike chain as the model. It is shown that the relevant theories for the expansion factors in the QTP scheme combined with these theories for the unperturbed wormlike chain are capable of describing the experimental data with a degree of accuracy similar to that known for nonionic flexible polymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2728–2735, 2002  相似文献   

4.
Dimethyl 2,6‐anthracene dicarboxylate is used as a comonomer in the synthesis of functional copolymers that are subject to modification with Diels–Alder reactions. The formation of poly(ethylene terephthalate‐co‐2,6‐anthracenate), containing less than 20 mol % of the anthracene‐2,6‐dicarboxylate structural units, provides materials that are tractable and soluble. The anthracene units of the copolymers undergo Diels–Alder reactions with N‐substituted maleimides. The grafting of N‐alkylmaleimides affords soluble, hydrophobic polymers, whereas grafting with maleimide‐terminated poly(ethylene glycol) affords hydrophilic polymers. Because this reaction proceeds below the melting point of the copolymers, the procedure can be applied to thin films, whereby the surface properties are modified. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3256–3263, 2002  相似文献   

5.
New graft copolymers of β‐pinene with methyl methacrylate (MMA) or butyl acrylate (BA) were synthesized by the combination of living cationic polymerization and atom transfer radical polymerization (ATRP). β‐Pinene polymers with predetermined molecular weights and narrow molecular weight distributions (MWDs) were prepared by living cationic polymerization with the 1‐phenylethyl chloride/TiCl4/Ti(OiPr)4/nBu4NCl initiating system, and the resultant polymers were brominated quantitatively by N‐bromosuccinamide in the presence of azobisisobutyronitrile, yielding poly(β‐pinene) macroinitiators with different bromine contents (Br/β‐pinene unit molar ratio = 1.0 and 0.5 for macroinitiators a and b , respectively). The macroinitiators, in conjunction with CuBr and 2,2′‐bipyridine, were used to initiate ATRP of BA or MMA. With macroinitiator a or b , the bulk polymerization of BA induced a linear first‐order kinetic plot and gave graft copolymers with controlled molecular weights and MWDs; this indicated the living nature of these polymerizations. The bulk polymerization of MMA initiated with macroinitiator a was completed instantaneously and induced insoluble gel products. However, the controlled polymerization of MMA was achieved with macroinitiator b in toluene and resulted in the desired graft copolymers with controlled molecular weights and MWDs. The structures of the obtained graft copolymers of β‐pinene with (methyl)methacrylate were confirmed by 1H NMR spectra. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1237–1242, 2003  相似文献   

6.
Poly(o‐aminophenethyl alcohol) and its copolymers containing the aniline unit were synthesized in aqueous hydrochloric acid medium by chemical oxidative polymerization. The chemical composition of these novel polymers was determined spectroscopically, and their viscosities were measured. These polymers exhibit good solubility in organic solvents that is attributed mainly to the polar hydroxyethyl side groups. Their structures (chain conformation and morphological structure) and properties (conductivity, electrochemical characteristics, glass transition, and degradation behavior) were characterized and then interpreted on the basis of the chemical composition along with the electronic and steric hindrance effects associated with the hydroxyethyl side group. Overall, the side group has a significant effect on the polymerization and influences the structure, chain conformation, and properties of the resultant polymer. The poly(aniline‐coo‐aminophenethyl alcohol)s containing 20–40 mol % o‐aminophenethyl alcohol units are potential conducting materials for microelectronic and electromagnetic shielding applications because they are easier to process than polyaniline but retain its beneficial properties. These polymers can also be used as a functional conducting polymer intermediate owing to the reactivity of the side group. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 983–994, 2002  相似文献   

7.
A series of novel temperature‐ and pH‐responsive graft copolymers, poly(L ‐glutamic acid)‐g‐poly(N‐isopropylacrylamide), were synthesized by coupling amino‐semitelechelic poly(N‐isopropylacrylamide) with N‐hydroxysuccinimide‐activated poly(L ‐glutamic acid). The graft copolymers and their precursors were characterized, by ESI‐FTICR Mass Spectrum, intrinsic viscosity measurements and proton nuclear magnetic resonance (1H NMR). The phase‐transition and aggregation behaviors of the graft copolymers in aqueous solutions were investigated by the turbidity measurements and dynamic laser scattering. The solution behavior of the copolymers showed dependence on both temperature and pH. The cloud point (CP) of the copolymer solution at pH 5.0–7.4 was slightly higher than that of the solution of the PNIPAM homopolymer because of the hydrophilic nature of the poly(glutamic acid) (PGA) backbone. The CP markedly decreased when the pH was lowered from 5 to 4.2, caused by the decrease in hydrophilicity of the PGA backbone. At a temperature above the lower critical solution temperature of the PNIPAM chain, the copolymers formed amphiphilic core‐shell aggregates at pH 4.5–7.4 and the particle size was reduced with decreasing pH. In contrast, larger hydrophobic aggregates were formed at pH 4.2. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4140–4150, 2008  相似文献   

8.
The preparation of a series of copolymers of Nt‐butylacrylamide (NTBAM) with acrylamide (AM) is reported. The insolubility of NTBAM in water led to the testing of methanol, t‐butanol, and mixtures of these solvents with water to obtain effective copolymerization. Several of these polymerizations produced nonhomogeneous product mixtures. Samples of the components were separated and characterized by photoacoustic Fourier transform infrared spectroscopy and 13C NMR spectroscopy. Hydrodynamic volumes of the products were obtained from solution‐viscosity measurements, gel permeation chromatography, and multi‐angle laser light scattering methods. The NTBAM‐co‐AM copolymers had degrees of polymerization and molecular weights in the 4.1–5.9 × 104 monomer units and 3.25–4.5 × 106 g/mol range, respectively. They contained from 15 to 36 mol % NTBAM. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 1960–1977, 2001  相似文献   

9.
The α,ω‐end‐capped poly(2‐methyl‐2‐oxazoline) (Cn‐POXZ‐Cn) have been synthesized by a one‐pot process using cationic ring‐opening polymerization with an appropriate initiator and terminating agent. The polymers bearing different alkyl groups C12 and C18 have molecular weight in the range of 2.4 × 103 to 14 × 103 with a small polydispersity index. The solution behavior of the free chains has been analyzed in a nonselective solvent, dichloromethane, by small‐angle neutron scattering and dynamic light scattering. These amphiphilic polymers associate in water to form flower‐like micellar structures. Critical micelle concentrations, investigated by fluorescence technique, are in the range of 0.03–0.5 g L?1 and are dependent on the hydrophilic/lipophilic balance. The structural properties of the aggregates have also been investigated by viscometry. Intrinsic viscosities of these polymers are in the same range as that of the precursors poly(2‐methyl‐2‐oxazoline) (POXZ) and mono‐functionalized polymers. Large viscosity increase corresponding to intermicellar bridging was observed in the vicinity of the micelle overlap concentration. Addition of hydroxypropyl β‐cyclodextrin (HβCD) has dissociated the aggregates and the intrinsic viscosities of the HβCD‐end‐capped chains have become comparable with the ones of POXZ precursor chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2477–2485, 2010  相似文献   

10.
New multi‐stimuli responsive cationic copolymers based on N‐acryloyl‐N′‐ethyl piperazine (AcrNEP) and N‐isopropylacrylamide (NIPAM) were prepared by thermal free‐radical solution polymerization in dioxane at 75 °C. The chemical composition of the copolymers was determined by 1H NMR spectroscopy and was found that the copolymers were slightly rich in NIPAM content than that of AcrNEP. The reactivity of the two monomers for the copolymerization reaction was evaluated by the extended Kelen‐Tüdös method. The distribution of monomer sequence in the copolymer chain was estimated using the terminal copolymerization model. The maximum tendency to alternation (~ 70%) was at 60 mol % of AcrNEP in the monomer feed. The copolymers were readily soluble in water at room temperature at all compositions and exhibited well‐defined lower critical solution temperature (LCST) phenomenon. The influence of various stimuli such as pH, temperature, simple inorganic salts, and surfactants on the LCST of the copolymers was studied in detail. Simple inorganic salts such as sodium chloride, sodium bromide, and sodium sulfate showed a salting‐out effect while sodium iodide showed a salting‐in effect. The salting‐out coefficient of the salts were calculated using the Sestchenow method, and the salting trend followed the order SO42? > Cl? > Br? > I?. The divalent salt was more effective in lowering the LCST than the monovalent salts. The cationic surfactant hexadecyl trimethylammonium bromide at concentrations above the critical micelle concentration caused a gradual increase in the LCST of the copolymer solutions. The intrinsic viscosity and light scattering behavior of the copolymers in water and in sodium chloride solutions were studied in detail. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1175–1183  相似文献   

11.
There is widespread interest in responsive polymers that show cloud point behavior, but little attention is paid to their solid state thermal properties. To manufacture products based on such polymers, it may be necessary to subject them to high temperatures; hence, it is important to investigate their thermal behavior. In this study, we characterized a family of poly(N‐isopropylacrylamide‐co‐hydroxymethylacrylamide) copolymers. Although poly(N‐isopropylacrylamide) shows very high thermal stability (up to 360 °C), introduction of hydroxy side chains leads to a significant reduction in stability and new degradation processes become apparent. Thermogravimetric analysis and fourier transform infrared spectroscopy (FT‐IR) indicate that the first degradation process involves a chemical dehydration step (110–240 °C), supported by the nonreversing heat flow response in modulated temperature differential scanning calorimetry. Water loss scales with the fraction of hydroxy monomer in the copolymer. Glass transition temperatures (Tg) are higher than the temperatures causing dehydration; hence, these values relate to newly‐formed copolymer structures produced by controlled heating under nitrogen. Fourier transform‐Raman (FT‐Raman) spectra suggest that this transition involves imine formation. The Tg increases as the fraction of hydroxy groups in the original copolymer increases. Further heating leads to degradation and mass loss, and more complex changes in the FT‐IR spectra, consistent with formation of unsaturated species. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

12.
Three series of semi‐interpenetrating polymer networks, based on crosslinked poly(N‐isopropyl acrylamide) (PNIPA) and 1 wt % nonionic or ionic (cationic and anionic) linear polyacrylamide (PAAm), were synthesized to improve the mechanical properties of PNIPA gels. The effect of the incorporation of linear polymers into responsive networks on the temperature‐induced transition, swelling behavior, and mechanical properties was studied. Polymer networks with four different crosslinking densities were prepared with various molar ratios (25:1 to 100:1) of the monomer (N‐isopropyl acrylamide) to the crosslinker (methylenebisacrylamide). The hydrogels were characterized by the determination of the equilibrium degree of swelling at 25 °C, the compression modulus, and the effective crosslinking density, as well as the ultimate hydrogel properties, such as the tensile strength and elongation at break. The introduction of cationic and anionic linear hydrophilic PAAm into PNIPA networks increased the rate of swelling, whereas the presence of nonionic PAAm diminished it. Transition temperatures were significantly affected by both the crosslinking density and the presence of linear PAAm in the hydrogel networks. Although anionic PAAm had the greatest influence on increasing the transition temperature, the presence of nonionic PAAm caused the highest dimensional change. Semi‐interpenetrating polymer networks reinforced with cationic and nonionic PAAm exhibited higher tensile strengths and elongations at break than PNIPA hydrogels, whereas the presence of anionic PAAm caused a reduction in the mechanical properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3987–3999, 2004  相似文献   

13.
This study is concerned with the development of new polymers that could be deposited via cathodic electrocoating methods on metal surfaces. The synthetic strategy is based on the incorporation of cationic functionalities into commercial polymers. Polyalkyl acrylic or methacrylic ester copolymers were reacted with primary or secondary amines and aminoalkanols or their mixtures. Depending on the proportion of the acrylic or methacrylic ester in the starting material and the extent of the chemical modification, the resulting amide functionalized polymers are soluble or dispersible in water and could be used as aqueous dispersions for cathodic electrodepositions. Hindered amine catalysts, such as diazabicyclo[2.2.2]octane, accelerate the chemical transformation leading to higher level of functionalization. Among different amines screened, mixtures of oleylamine and ethanolamine proved to produce the best results. A poly(ethylene‐co‐methyl acrylate‐co‐maleic anhydride) [poly(E‐co‐MA‐co‐MAH)] was aminolyzed in solution with a mixture of 50/50 (mol % ratio) of oleylamine/ethanolamine and used to generate aqueous dispersions via phase inversion from methyl isobutyl ketone solutions. These dispersions exhibit particle sizes in the submicron range and zeta potential values indicating a good stability. They could be electrodeposited to give films of high elasticity according to the nanomechanical tests. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
A series of new poly(imide‐hydrazide)s and poly(amide‐imide‐hydrazide)s were obtained by the direct polycondensation of N‐[p‐(or m‐)carboxyphenyl]trimellitimide (p‐ or m‐CPTMI) with terephthalic dihydrazide (TPH), isophthalic dihydrazide (IPH), and p‐aminobenzhydrazide (p‐ABH) by means of diphenyl phosphite and pyridine in the N‐methyl‐2‐pyrrolidone (NMP) solutions containing dissolved CaCl2. The resulting hydrazide‐containing polymers exhibited inherent viscosities in the 0.15–0.96 dL/g range. Except for that derived from p‐CPTMI with TPH or p‐ABH, the other hydrazide copolymers were readily soluble in polar solvents such as NMP and dimethyl sulfoxide (DMSO). As evidenced by X‐ray diffraction patterns, the hydrazide copolymer obtained from TPH showed a moderate level of crystallinity, whereas the others were amorphous in nature. Most of the amorphous hydrazide copolymers formed flexible and tough films by solvent casting. The amorphous hydrazide copolymers had glass‐transition temperatures (Tg) between 187 and 233 °C. All hydrazide copolymers could be thermally converted into the corresponding oxadiazole copolymers approximately in the region of 250–400 °C, as evidenced by the DSC thermograms. The oxadiazole copolymers showed a significantly decreased solubility when compared to their respective hydrazide precursors. They exhibited Tg's of 264–302 °C and did not show dramatic weight loss before 400 °C in air or nitrogen. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1599–1608, 2000  相似文献   

15.
Functional, degradable polymers were synthesized via the copolymerization of vinyl acetate (VAc) and 2‐methylene‐1,3‐dioxepane (MDO) using a macro‐xanthate CTA, poly(N‐vinylpyrrolidone), resulting in the formation of amphiphilic block copolymers of poly(NVP)‐b‐poly(MDO‐co‐VAc). The behavior of the block copolymers in water was investigated and resulted in the formation of self‐assembled nanoparticles containing a hydrophobic core and a hydrophilic corona. The size of the resultant nanoparticles was able to be tuned with variation of the hydrophilic and hydrophobic segments of the core and corona by changing the incorporation of the macro‐CTA as well as the monomer composition in the copolymers, as observed by Dynamic Light Scattering, Static Light Scattering, and Transmission Electron Microscopy analyses. The concept was further applied to a VAc derivative monomer, vinyl bromobutanoate, to incorporate further functionalities such as fluorescent dithiomaleimide groups throughout the polymer backbone using azidation and “click” chemistry as postpolymerization tools to create fluorescently labeled nanoparticles. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2699–2710  相似文献   

16.
The quasi‐living cationic copolymerization of 3,3‐bis(chloromethyl)oxetane (BCMO) and ε‐caprolactone (ε‐CL), using boron trifluoride etherate as catalyst and 1,4‐butanediol as coinitiator, was investigated in methylene chloride at 0°C. The resulting hydroxyl‐ended copolymers exhibit a narrow molecular weight polydispersity and a functionality of about 2. The reactivity ratios of BCMO (0.26) and ε‐CL (0.47), and the Tg of the copolymers, indicate their statistical character. The synthesis of poly(3,3‐bis(azidomethyl)oxetane‐co‐ε‐caprolactone) from poly(BCMO‐co‐ε‐CL) via the substitution of the chlorine atoms by azide groups, using sodium azide in DMSO at 110°C, occurs without any degradation, but the copolymers decompose at about 240°C. All polymers were characterized by vapor pressure osmometry or steric exclusion chromatography, 1H‐NMR and FTIR spectroscopies, and DSC. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1027–1039, 1999  相似文献   

17.
Two series of new poly(amide imide)s having (n‐alkyoxy)phenyloxy side branches with various lengths, poly{p‐phenyleneiminoterephthaloylimino‐p‐phenylene[3,6‐di(n‐alkyloxy)phenyloxy]pyromellitimide}s ( PC m TA s, m = 4, 8, 12) and poly{p‐phenyleneiminosebacoylimino‐p‐phenylene[3,6‐di(n‐alkyloxy)‐phenyloxy]‐ pyromellitimide}s ( PC m SeA s, m = 4, 8, 12), were prepared by condensation of terephthalamide‐N,N′‐4,4′‐dianiline ( TA ) and sebacamide‐N,N′‐4,4′‐dianiline ( SeA ) with 3,6‐di[4‐(n‐alkyloxy)phenyloxy]pyromellitic dianhydrides , respectively. The inherent viscosities of the polymers were in the 0.82–1.20 dL/g range. The polymers were highly soluble in N‐methylpyrolidinone (NMP), even at room temperature and soluble in other polar aprotic solvents on heating. The PC m TA s, which have aromatic backbones, were thermally more stable (431–442 °C) than the PC m SeA s, which have an octamethylene unit in the main chain (407–409 °C). Degradation of weight up to 900 °C corresponded with the loss of side chain contents. The PC m TA s exhibited no phase transition, whereas two endothermic peaks were observed for each of the PC m SeA s. Wide‐angle X‐ray diffractometer investigations revealed that both polymers are amorphous and the n‐alkyloxy side chains are present in a layered structure. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3818–3825, 2001  相似文献   

18.
We synthesized biobased poly(2,5‐furandimethylene succinate‐co‐butylene succinate) [P(FS‐co‐BS)] copolymers by polycondensation of 2,5‐bis(hydroxymethyl)furan, 1,4‐butanediol, and succinic acid. These copolymers could be crosslinked to form network polymers by means of a reversible Diels–Alder reaction with bis‐maleimide. The thermal properties, mechanical properties, and healing abilities of the P(FS‐co‐BS)s and the network polymers were investigated. The mechanical properties of the network polymers depended on the comonomer composition of the P(FS‐co‐BS)s and the maleimide/furan ratio in the network polymers. Some of the copolymers exhibited healing ability at room temperature, and their healing efficiency was enhanced by solvent or heat. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 216–222  相似文献   

19.
Two new extended self‐polymerizable AB monomers, N‐(4‐fluorobenzoyl)‐4‐amino‐4′‐hydroxydiphenylether and N‐(4‐fluorobenzoyl)‐4‐amino‐4′‐hydroxybiphenyl, were prepared. The monomers were homopolymerized and copolymerized to high‐molecular‐weight, linear poly(arylether amides) in N‐methylpyrrolidone (NMP)/toluene in the presence of potassium carbonate at elevated temperature. The polymers retained NMP up to 200 °C. Samples containing small amounts of the solvent (5–10 wt %) were soluble in polar aprotic solvents. However, after complete removal of the NMP, the polymers were only soluble in strong acids such as sulfuric acid and methanesulfonic acid (MSA). The polymers, which had intrinsic viscosities of 0.57–1.49 dL/g (30.1 ± 0.1 °C in MSA), were semicrystalline with melting temperatures above 400 °C. Two new self‐polymerizable AB2 amide monomers, N,N′‐bis(4‐fluorobenzoyl)‐3,4‐diamino‐4′‐hydroxydiphenylether and N,N′‐bis(4‐fluorobenzoyl)‐3,5‐diamino‐4′‐hydroxybenzophenone, were also prepared and polymerized to give a hyperbranched poly(arylether amide) and a hyperbranched poly(aryletherketone) amide. The arylfluoride‐terminated, amorphous polymers had intrinsic viscosities of 0.34 and 0.24 dL/g (30.0 ± 0.1 °C in m‐cresol), glass‐transition temperatures of 210–269 °C, and were soluble in a wide variety of organic solvents. Matrix‐assisted laser desorption/ionization time‐of‐flight analysis indicated that the components of the low‐molecular‐weight fractions contained cyclic structures. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2374–2389, 2003  相似文献   

20.
Tetrakis bromomethyl benzene was used as a tetrafunctional initiator in the synthesis of four‐armed star polymers of methyl methacrylate via atom transfer radical polymerization (ATRP) with a CuBr/2,2 bipyridine catalytic system and benzene as a solvent. Relatively low polydispersities were achieved, and the experimental molecular weights were in agreement with the theoretical ones. A combination of 2,2,6,6‐tetramethyl piperidine‐N‐oxyl‐mediated free‐radical polymerization and ATRP was used to synthesize various graft copolymers with polystyrene backbones and poly(t‐butyl methacrylate) grafts. In this case, the backbone was produced with a 2,2,6,6‐tetramethyl piperidine‐N‐oxyl‐mediated stable free‐radical polymerization process from the copolymerization of styrene and p‐(chloromethyl) styrene. This polychloromethylated polymer was used as an ATRP multifunctional initiator for t‐butyl methacrylate polymerization, giving the desired graft copolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 650–655, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号