首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We describe the preparation, characterization, and luminescence of four novel electrochromic aromatic poly(amine hydrazide)s containing main‐chain triphenylamine units with or without a para‐substituted N,N‐diphenylamino group on the pendent phenyl ring. These polymers were prepared from either 4,4′‐dicarboxy‐4″‐N,N‐diphenylaminotriphenylamine or 4,4′‐dicarboxytriphenylamine and the respective aromatic dihydrazide monomers via a direct phosphorylation polycondensation reaction. All the poly(amine hydrazide)s were amorphous and readily soluble in many common organic solvents and could be solution‐cast into transparent and flexible films with good mechanical properties. These poly(amine hydrazide)s exhibited strong ultraviolet–visible absorption bands at 346–348 nm in N‐methyl‐2‐pyrrolidone (NMP) solutions. Their photoluminescence spectra in NMP solutions or as cast films showed maximum bands around 508–544 and 448–487 nm in the green and blue region for the two series of polymers. The hole‐transporting and electrochromic properties were examined by electrochemical and spectroelectrochemical methods. All obtained poly(amine hydrazide)s and poly(amine‐1,3,4‐oxadiazole)s exhibited two reversible oxidation redox couples at 0.8 and 1.24 V vs. Ag/AgCl in acetonitrile solution and revealed excellent stability of electrochromic characteristics, changing color from original pale yellow to green and then to blue at electrode potentials of 0.87 and 1.24 V, respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3245–3256, 2005  相似文献   

2.
trans‐1,4‐Cyclohexylene ring containing acid chloride monomers were incorporated into poly(arylene ether sulfone) (PAES) backbones to study their effect on mechanical and thermal properties. The trans‐1,4‐cyclohexylene ring containing acid chloride monomers were synthesized and characterized by NMR and high‐resolution mass spectrum. trans‐1,4‐Cyclohexylene containing PAESs were synthesized from the acid chloride monomers and hydroxyl terminated polysulfone oligomers with a pseudo‐interfacial method and a solution method. These PAESs, with trans‐1,4‐cyclohexylene ring containing ester linkages, were fully characterized by NMR, thermogravimetric analysis, differential scanning calorimetry (DSC), size exclusion chromatography, and dynamic mechanical analysis (DMA). The tensile properties were also evaluated. The polymers made with the pseudo‐interfacial method had relatively low molecular weights when compared to the solution method where much higher molecular weight polymers were obtained. Crystallinity was promoted in the low molecular weight biphenol‐based PAES samples with the pseudo‐interfacial method. The crystallinity was confirmed by both the DSC and the wide angle X‐ray diffraction results. The tensile test results of the high molecular weight polymers suggested that incorporation of the trans‐1,4‐cyclohexylene ring containing linkage slightly improved the ultimate elongations while maintaining the Young's moduli. The trans‐1,4‐cyclohexylene ring containing PAESs also showed higher sub‐Tg relaxations in DMA when compared with their terephthaloyl containing analog. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
The synthesis of a new A2X‐type difluoride monomer, N‐2‐pyridyl‐4′,4″‐bis‐(4‐fluorobenzenesulfonyl)‐o‐terphenyl‐3,6‐dimethyl‐4,5‐dicarboxylic imide ( 3 ), is described. The monomer 3 was incorporated into a series of copoly(aryl ether sulfone)s by polymerization of 4,4′‐isopropylidenediphenol and 4,4′‐difluorophenylsulfone. The incorporation of monomer 3 had an observable effect on both the glass‐transition temperature of poly(aryl ether sulfone)s and the tendency for macrocyclic oligomers to form during polymerization. Replacement of the pyridyl imide group via a transimidization reaction with propargyl amine proceeded quantitatively and without polymer degradation. The acetylene containing copoly(aryl ether sulfone) could be crosslinked by simple thermal treatment, resulting in an increase in the glass‐transition temperature and solvent resistance. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 9–17, 2000  相似文献   

4.
4,4′‐(1,4‐Phenylenedioxy)dibenzoic acid as well as the 2‐methyl‐, 2‐tert‐butyl‐, or 2‐phenyl‐substituted derivatives of this dicarboxylic acid were synthesized in two main steps from p‐fluorobenzonitrile and hydroquinone or its methyl‐, tert‐butyl‐, or phenyl‐substituted derivatives. Polyhydrazides and poly(amide–hydrazide)s were prepared from these bis(ether benzoic acid)s or their diacyl chlorides with terephthalic dihydrazide, isophthalic dihydrazide, or p‐aminobenzoyl hydrazide by means of the phosphorylation reaction or low‐temperature solution polycondensation. Most of the hydrazide polymers and copolymers are amorphous and readily soluble in various polar solvents such as N‐methyl‐2‐pyrrolidone (NMP) and dimethyl sulfoxide. They could be solution‐cast into transparent, flexible, and tough films. These polyhydrazides and poly(amide–hydrazide)s had Tgs in the range of 167–237°C and could be thermally cyclodehydrated into the corresponding poly(1,3,4‐oxadiazole)s and poly(amide–1,3,4‐oxadiazole)s approximately in the region of 250–350°C, as evidenced by the DSC thermograms. All the tert‐butyl‐substituted oxadiazole polymers and those derived from isophthalic dihydrazide were organic soluble. The thermally converted oxadiazole polymers exhibited Tgs in the range of 208–243°C and did not show significant weight loss before 450°C either in nitrogen or in air. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1169–1181, 1999  相似文献   

5.
Two sulfonyl group-containing bis(ether anhydride)s, 4,4′-[sulfonylbis(1,4-phenylene)dioxy]diphthalic anhydride ( IV ) and 4,4′-[sulfonylbis(2,6-dimethyl-1,4-phenylene)dioxy]diphthalic anhydride (Me- IV ), were prepared in three steps starting from the nucleophilic nitrodisplacement reaction of the bisphenolate ions of 4,4′-sulfonyldiphenol and 4,4′-sulfonylbis(2,6-dimethylphenol) with 4-nitrophthalonitrile in N,N-dimethylformamide (DMF). High-molar-mass aromatic poly(ether sulfone imide)s were synthesized via a conventional two-stage procedure from the bis(ether anhydride)s and various aromatic diamines. The inherent viscosities of the intermediate poly(ether sulfone amic acid)s were in the ranges of 0.30–0.47 dL/g for those from IV and 0.64–1.34 dL/g for those from Me- IV. After thermal imidization, the resulting two series of poly(ether sulfone imide)s had inherent viscosities of 0.25–0.49 and 0.39–1.19 dL/g, respectively. Most of the polyimides showed distinct glass transitions on their differential scanning calorimetry (DSC) curves, and their glass transition temperatures (Tg) were recorded between 223–253 and 252–288°C, respectively. The results of thermogravimetry (TG) revealed that all the poly(ether sulfone imide)s showed no significant weight loss before 400°C. The methyl-substituted polymers showed higher Tg's but lower initial decomposition temperatures and less solubility compared to the corresponding unsubstituted polymers. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1649–1656, 1998  相似文献   

6.
Several new co‐poly(arylene ether sulfone)s have been prepared by the reaction of 4,4′‐fluorodiphenyl sulfone (FDS) with different bisphenols namely 4,4′‐isopropylidenediphenol (BPA), 4,4′‐hexafluoroisopropylidenediphenol (6F‐BPA), and N‐phenyl‐3,3‐bis(4‐hydroxyphenyl)phthalimidine(PA). The homo‐poly(arylene ether sulfone)s are named as 1a, 2a, and 3a. The copolymers namely 2b, 2c, 2d and 3b, 3c, 3d have been prepared, respectively, on reaction of FDS with BPA or 6F‐BPA using different molar ratios of PA such as 25, 50, and 75. The poly(aryl ether sulfone)s 1a containing PA unit in the main chain showed a very high glass transition temperature of 280°C and an outstanding thermal stability up to 510°C for 5% weight loss under synthetic air. Depending on the mole% of PA, the glass transition temperatures of the copolymers can be varied. The polymers were soluble in a wide range of organic solvents. Transparent thin films of these polymers exhibited tensile strengths upto 84 MPa and Young's modulus up to 3.16 GPa. The films of these polymers showed low water absorption of 0.24%. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A series of soluble alternating poly(fluorene)‐based copolymers containing electron‐transporting 1,3,4‐oxadiazole (OXD) and hole‐transporting carbazole pendants attached to the C‐9 position of fluorene units by long alkyl spacers were synthesized. These copolymers possess mesogenic and nonmesogenic pendants attached to a rigid mesogenic poly(fluorene) (PF) backbone. All these polymers exhibit glass‐forming liquid crystalline properties, including the nematic and smectic A (SmA) phases, and reveal much wider mesophasic temperature ranges than that of PF. The thermal properties and mesomorphism of these conjugated polymers are mainly affected by the nature of these pendants, and thus the mesophasic temperature ranges and glass‐forming properties are greatly enhanced by introducing the OXD pendants. In addition, the tendencies of crystallization and aggregation of PF are also suppressed by introducing the OXD pendants. A single layer device with P4 as an emitter shows a turn‐on voltage of 5 V and a bright luminescence of 2694 cd/m2 at 11 V with a power efficiency of 1.28 cd/A at 100 mA/cm2. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2700–2711, 2005  相似文献   

8.
High molecular-weight aromatic polyamides were obtained from 1,5- and 2,6-bis-(4′-carboxy-4-phenylenoxy-sulfonyl)naphthalene by direct polycondensation reaction in N-methyl-2-pyrrolidone with various aromatic diamines, using triphenyl phosphite and pyridine as condensing agents. The polymers were characterized by elemental analysis, thermogravimetric analysis, differential scanning calorimetry, and infrared analysis. The polyamides, obtained in quantitative yield, possessed inherent viscosities in the range 0.42–1.70 dL/g, glass transition temperatures between 245–310°C, and 10% weight loss temperatures in nitrogen and air above 435 and 424°C, respectively. Most of the polymers were soluble in aprotic solvents. The effect of the structure on properties, such as solubility, Tg, and thermal behavior, were also studied. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
A new AB2 monomer was synthesized for use in the preparation of a hyperbranched poly(aryl ether oxadiazole) with terminal phenol functionality. The AB2 monomer contains two phenolic groups and a single aryl fluoride group that is activated toward nucleophilic displacement by the attached oxadiazole ring. The nucleophilic substitution of the fluoride with the phenolate groups led to the formation of an ether linkage. Subsequently, a hyperbranched poly(aryl ether oxadiazole) having approximately a 44% degree of branching, as determined by a combination of model compound studies and 1H NMR, was obtained. The terminal phenolic groups underwent facile functionalization, furnishing hyperbranched polymers with a variety of functional chain ends. The nature of the chain‐end groups had a significant influence on the physical properties of the polymers, such as the glass‐transition temperature and their solubility. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3851–3860, 2001  相似文献   

10.
A series of poly(o‐hydroxy amide)s having both ether and sulfone linkages in the main chain were synthesized via the low‐temperature solution polycondensation of 4,4′‐[sulfonylbis(1,4‐phenylene)dioxy]dibenzoyl chloride and 4,4′‐[sulfonylbis(2,6‐dimethyl‐1,4‐phenylene)dioxy]dibenzoyl chloride with three bis(o‐aminophenol)s including 4,4′‐diamino‐3,3′‐dihydroxybiphenyl, 3,3′‐diamino‐4,4′‐dihydroxybiphenyl, and 2,2‐bis(3‐diamino‐4‐hydroxyphenyl)hexafluoropropane. Subsequent thermal cyclodehydration of the poly(o‐hydroxy amide)s afforded polyethersulfone benzoxazoles. Most of the poly(o‐hydroxy amide)s were soluble in polar organic solvents such as N‐methyl‐2‐pyrrolidone; however, the polybenzoxazoles without the hexafluoroisopropylidene group were organic‐insoluble. The polybenzoxazoles exhibited glass‐transition temperatures (Tg) in the range of 219–282 °C by DSC and softening temperatures (Ts) of 242–320 °C by thermomechanical analysis. Thermogravimetric analyses indicated that most polybenzoxazoles were stable up to 450 °C in air or nitrogen. The 10% weight loss temperatures were recorded in the ranges of 474–593 °C in air and 478–643 °C in nitrogen. The methyl‐substituted polybenzoxazoles had higher Tg's but lower Ts's and initial decomposition temperatures compared with the corresponding unsubstituted polybenzoxazoles. For a comparative purpose, the synthesis and characterization of a series of sulfonyl polybenzoxazoles without the ether group that derived from 4,4′‐sulfonyldibenzoyl chloride and bis(o‐aminophenol)s were also reported. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2262–2270, 2001  相似文献   

11.
A series of new poly(imide‐hydrazide)s and poly(amide‐imide‐hydrazide)s were obtained by the direct polycondensation of N‐[p‐(or m‐)carboxyphenyl]trimellitimide (p‐ or m‐CPTMI) with terephthalic dihydrazide (TPH), isophthalic dihydrazide (IPH), and p‐aminobenzhydrazide (p‐ABH) by means of diphenyl phosphite and pyridine in the N‐methyl‐2‐pyrrolidone (NMP) solutions containing dissolved CaCl2. The resulting hydrazide‐containing polymers exhibited inherent viscosities in the 0.15–0.96 dL/g range. Except for that derived from p‐CPTMI with TPH or p‐ABH, the other hydrazide copolymers were readily soluble in polar solvents such as NMP and dimethyl sulfoxide (DMSO). As evidenced by X‐ray diffraction patterns, the hydrazide copolymer obtained from TPH showed a moderate level of crystallinity, whereas the others were amorphous in nature. Most of the amorphous hydrazide copolymers formed flexible and tough films by solvent casting. The amorphous hydrazide copolymers had glass‐transition temperatures (Tg) between 187 and 233 °C. All hydrazide copolymers could be thermally converted into the corresponding oxadiazole copolymers approximately in the region of 250–400 °C, as evidenced by the DSC thermograms. The oxadiazole copolymers showed a significantly decreased solubility when compared to their respective hydrazide precursors. They exhibited Tg's of 264–302 °C and did not show dramatic weight loss before 400 °C in air or nitrogen. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1599–1608, 2000  相似文献   

12.
Random and block copolymers of poly (ether sulfone) (PES) and poly (ether ether sulfone) (PEES) were synthesized by the nucleophilic polycondensation of 4,4′‐dichlorodiphenyl sulfone (DCDPS) with 4,4′‐dihydroxydiphenyl sulfone (DHDPS) and hydroquinone (HQ). Chemical structures of these copolymers were characterized by 13C NMR. The monomer molar fraction, sequential distribution, and degree of randomness of the copolymers were determined through analyses of the resonances of quaternary carbons in the DCDPS unit. Experimental results show that the molar fractions of the comonomer determined by 13C NMR analyses are close to the charged values in the synthetic step. Moreover, these copolymers, which were prepared by different polymerization methods, revealed different number‐average sequential length and degree of randomness. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1624–1630, 2005  相似文献   

13.
The new convenient method for the synthesis of high molecular weight aromatic poly(1,3,4‐oxadiazole)s (PODs) has been proposed. These polymers were prepared by “one‐pot” procedure from dicarboxylic acid and hydrazine's salt (sulfate, phosphate) or dicarboxylic acid dihydrazides. The mixture of ionic liquid and triphenyl phosphite was used both as a solvent and condensing agent. The polycyclization occurred at a sufficiently low temperature of 210 °C for 2–5 h and resulted in obtaining film‐forming PODs having inherent viscosities up to 0.9 dL/g and good thermal stability. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 380–394, 2006  相似文献   

14.
Novel methyl-substituted aromatic poly (ether sulfone)s and poly (ether ketone)s were synthesized from combinations of 3,3′,5,5′-tetramethylbipheny-4,4′-diol and 2,2′,3,3′,5,5′-hexamethylbiphenyl-4,4′-diol, and 4,4′-dichlorodiphenyl sulfone and 4,4′-difluorobenzo-phenone by nucleophilic aromatic substitution polycondensation. The polycondensations proceeded quantitatively in a N-methyl-2-pyrrolidone-toluene solvent system in the presence of anhydrous potassium carbonate to afford the polymers with inherent viscosities between 0.86 and 1.55 dL/g. The methyl-substituted poly (ether sulfone)s and poly (ether ketone)s showed good solubility in common organic solvents such as chloroform, tetrahydrofuran, pyridine, m-cresol, and N,N-dimethylacetamide. The tetramethyl- and hexamethyl-substituted aromatic polyethers had higher glass transition temperatures than the corresponding unsubstituted polymers, and did not decompose below 350°C in both air and nitrogen atmospheres. The films of the methyl-substituted poly (ether ketone)s became insoluble in chloroform by the irradiation of ultraviolet light, indicating the occurrence of photochemical crosslinking reactions. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
Poly(arylene ether sulfone) copolymers derived from 9,9-bis(4-hydroxyphenyl)fluorene, bisphenol S and 4,4′-difluorodiphenylsulfone and poly(arylene ether ketone) copolymers derived from 4-phenoxybiphenyl, diphenyl ether and isophthaloyl chloride were prepared as precursor polymers for sulfonation reaction in which sulfonic groups are introduced quantitatively into specified positions. Sulfonation reaction for these two series of copolymers by concentrated sulfuric acid was successfully carried out to give sulfonated polymers with controlled positions and degree of sulfonation. Thermal stability, moisture absorption and proton conductivity for these two series of copolymers were measured and the results were compared to those of perfluorosulfonic acid polymers.  相似文献   

16.
Long‐chain branched poly(ether sulfone)s (PESs) were synthesized via self‐polycondensation of AB2 macromonomers. The linear PES oligomers synthesized by self‐polycondensation of 4‐chloro‐4′‐(4‐hydroxyphenyloxy)diphenyl sulfone were terminated with 4‐(3,5‐methoxyphenoxy)‐4′‐fluorodiphenyl sulfone to form AB2 macromonomer precursors. After conversion from methoxy to hydroxy groups, the AB2 macromonomers were self‐polycondensed to form long‐chain branched PESs. NMR measurements support the formation of the target macromonomers ( = 2930–67,800 (g mol?1); Mn = number average molecular weight) and long‐chain branched PESs. Gel permeation chromatography with multiangle light scattering measurements indicated the formation of high‐molecular‐weight (Mw) polymers over 104. The root‐mean‐square radius of gyration (Rg) suggests that the shape of the long‐chain branched PES synthesized from small AB2 macromonomers in solution is similar to that of hyperbranched polymers. Increasing resulted in larger Rg, suggesting a transition from hyperbranched to a linear‐like architecture in the resulting long‐chain branched PESs. Rheological measurements suggested the presence of strongly entangled chains in the long‐chain branched PES. Higher tensile modulus and smaller elongation at the break were observed in the tensile tests of the long‐chain branched PESs. It is assumed that the enhanced molecular entanglement points may act as physical crosslinks at room temperature. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1825–1831  相似文献   

17.
A new monomer, 2,6‐bis(4‐phenoxybenzoyl)naphthalene (BPOBON), was easily synthesized via simple synthetic procedures from readily available materials. A series of novel poly(aryl ether ketone)s containing both 2,6‐naphthylene moieties and amide linkages in the main chains were prepared by the Friedel‐Crafts acylation solution copolycondensation of isophthaloyl chloride with a mixture of BPOBON and N,N'‐bis(4‐phenoxybenzoyl)‐1,4‐phenylenediamine (BPBPPD), over a wide range of BPOBON/BPBPPD molar ratios, in the presence of anhydrous AlCl3 and N‐methylpyrrolidone in 1,2‐dichloroethane. All the polymers are semicrystalline and had remarkably increased Tgs over the conventional PEEK and PEKK due to the incorporation of naphthalene and amide linkages in the main chains. The polymers with 50–70 mol% BPOBON had not only high Tgs of 179–186 °C, but also moderate Tms of 321–328 °C, which are very suitable for the melt processing. These polymers had tensile strengths of 101.5–107.1 MPa, Young's moduli of 2.13–2.39 GPa, and elongations at break of 11.8–13.7% and exhibited excellent thermal stability and good resistance to organic solvents. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The synthesis of novel phosphorus-nitrogen synergism aromatic poly(ether sulfone)s was carried out successfully by using phosphorus-containing and nitrogen-containing biphenol-like monomers, 1,1′-bis(4-hydroxyphenyl)-metheylene-bispheny-1-oxophosphine oxide (DOPO-PhOH) and 1,2-dihydro-4-(4-hydroxyphenyl)phthalazin-1(2H)-one (DHPZ), in the usual synthesis procedure. Polymers with sufficient molecular weights could be obtained. The structure of the phosphorus-nitrogen containing poly(ether sulfone)s was characterized by means of Fourier transform infrared spectra (FTIR) and nuclear magnetic resonance spectroscopy (1H NMR, 31P NMR). The influence of monomer ratio on their thermal stability was also investigated by adjusting the proportion of DOPO-PhOH/DHPZ (mol/mol) from 80/20 to 20/80. The molecular weight and glass-transition temperatures (Tg′s) of the polymers increased with increasing content of the DHPZ monomer. The high thermal stabilities were depended on the different proportion of diol type incorporated.  相似文献   

19.
Branched poly(ether sulfone)s were prepared from 1,1,1‐tris(4‐hydroxyphenyl) ethane and 4,4′‐difluorodiphenyl sulfone (DFDPS) either by polycondensation in dimethyl sulfoxide with the elimination of water or via the silyl method in N‐methylpyrrolidone. With an exact 1/1 stoichiometry, crosslinking was avoidable, but significant fractions of cyclic oligomers and polymers were detected by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. Furthermore, bridged cycles (bicycles) were detected. For the silyl method, even an excess of DFDPS of 10 mol % did not result in crosslinking. The pendant OH groups were modified by acylation with acetic anhydride, methacrylic anhydride, undecylenoyl chloride, or cinnamoyl chloride. Alkylation was only successful in a one‐pot procedure via the silyl method. Alkylbromide, ethyl bromoacetate, 3‐chloropropionitrile, 4‐nitrobenzyl bromide, and 3,4‐dichlorobenzyl chloride served as alkylating agents. With 1,3‐propane and 1,4‐butane sultone, poly(ether sulfone)s with pendant sulfonate groups were obtained. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2967–2978, 2002  相似文献   

20.
Poly(ether sulfone)s containing pendant sodium sulfonate groups were prepared by the aromatic nucleophilic substitution reaction of 4,4′-dichlorodiphenylsulfone ( 1 ) and sodium 5,5′-sulfonylbis (2-chlorobenzenesulfonate) ( 2 ) with bisphenols ( 3 ) in the presence of potassium carbonate in N,N-dimethylacetamide. A new monomer 2 containing the sodium sulfonate groups was synthesized by the sulfonation of 1 with fuming sulfuric acid. The polycondensation proceeded smoothly at 170°C and produced the desired poly(ether sulfone)s containing the sodium sulfonate with inherent viscosities up to 1.2 dL/g. The polymers were quite soluble in strong acid, dipolar aprotic solvents, m-cresol, and dichloromethane. The thermogravimetry of the polymers showed excellent thermal stability, indicating that 10% weight losses of the polymers were observed in the range above 460°C in nitrogen atmosphere. Both the glass transition temperatures and hydrophilicity of the polymers increased with increasing their concentrations of sodium sulfonate groups. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号