首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methacrylic copolymers with a hydroxyl group on one end of the main chain and nona‐1‐butoxytrititanosiloxane as side groups (called methacrylic hybrid copolymers) were synthesized for use as baked‐finish‐type coating resins. The chemical structures of the side groups in the methacrylic hybrid copolymers were confirmed with the ash weight of the copolymers after combustion, the elemental ratio analysis of Si and Ti in the ash determined by inductively coupled plasma emission spectrometry, and the characteristic absorption band determined by Fourier transform infrared spectrophotometry. The methacrylic hybrid copolymers were cured at temperatures less than 150 °C in the absence of a curing accelerator. The cured copolymers exhibited a high thermal stability. The curing temperature of the copolymers was determined by the change in the absorption peak strength (peak area) of the 1655 cm−1 band in the IR difference spectrum. The thermal stability of the copolymers was evaluated as the thermal‐degradation temperature measured by thermogravimetric analysis. The methacrylic hybrid copolymers were then be used as effective curing resins. The mixture, consisting of thermoplastic methacrylic terpolymer with hydroxyl and carboxyl groups and the methacrylic hybrid copolymers, were cured at less than 150 °C in the absence of a curing accelerator and exhibited a higher thermal‐degradation temperature than the copolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1090–1098, 2001  相似文献   

2.
A new hyperbranched‐linear‐hyperbranched polymer was prepared in a one pot process by reaction of 4,4‐bis(4‐hydroxyphenyl)valeric acid and poly(ethylene glycol) (HPH). After characterization by 1H and 13C NMR, SEC, DSC, and TGA, this polymer was used, in proportions of 5, 10, and 15 phr, as a chemical modifier in the UV and thermal cationic curing of 3,4‐epoxycyclohexylmethyl‐3′,4′‐epoxycyclohexyl carboxylate epoxy resin. The curing process was studied by calorimetry, demonstrating the accelerating effect of the hydroxyl groups present in HPH's structure. The morphology of the resulting thermosets depended on the curing system used, as demonstrated by FE‐SEM microscopy, but in both cases phase separation occurred. Thermosets obtained by thermal curing presented lower thermal stability than UV‐cured materials. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
High curing temperature has been restricting the application and development of phthalonitrile resin. A complex curing agent containing melamine (ME) and ZnCl2 was developed to promote the curing reaction of resorcinol‐based phthalonitrile resin (DPPH). The thermal stability of ME can be significantly enhanced via adding ZnCl2, which was due to the interaction between ZnCl2 and amino group in ME. Moreover, the activities of pristine ZnCl2 and ME were improved via mixing, especially, the curing temperature for DPPH can be effectively reduced. Even at a curing temperature of 300°C, the 5% weight loss temperature of the resulting resin cured with complex curing agent still exceeded 500°C, which was much higher than those with pristine curing agents. In addition, the good long‐term oxidation stability and relatively low water absorption can also be obtained in the resins cured with novel curing agent. This work affords a facile route for designing high‐performance curing agent to improve the curing process of phthalonitrile resin.  相似文献   

4.
A novel liquid‐crystalline epoxy resin combining biphenyl and aromatic ester‐type mesogenic units, diglycidyl ether of 4,4′‐bis(4‐hydroxybenzoyloxy)‐3,3′,5,5′‐tetramethyl biphenyl, was synthesized. Its spectroscopic structure, thermal properties, and phase structures were investigated with NMR, differential scanning calorimetry (DSC), and polarized light microscopy (PLM), respectively. The curing agent, diaminodiphenylsulfone, was chosen to investigate the curing behavior by means of DSC and PLM during isothermal and nonisothermal processes. Only one exothermal peak appeared in the isothermal DSC curves. Birefringence was also observed during the curing processes and preserved after postcuring. Compared with short rigid‐rod and flexible epoxies, the cured liquid‐crystalline epoxy resin that was obtained displayed special thermal stability according to thermogravimetric analysis because of its long rigid‐rod mesogenic unit and bulky methyl groups. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 727–735, 2007  相似文献   

5.
Novel reversible networks utilizing photodimerization of crosslinkable anthracene groups and thermal dissociation were investigated. Reversible addition‐fragmentation chain transfer polymerization yielded well‐defined copolymers with 9‐anthrylmethyl methacrylate (AMMA) and other alkyl methacrylates such as methyl methacrylate (MMA) and 2‐ethylhexyl methacrylate (EHMA) having different AMMA compositions. Well‐controlled block copolymerization of AMMA and alkyl methacrylates was also successfully accomplished using a trithiocarbonate‐terminated poly(alkyl methacrylate) macro‐chain transfer agent. The anthracene‐containing copolymers showed reversibility via crosslinking based on photodimerization with ultraviolet irradiation and subsequent thermal dissociation. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2302–2311  相似文献   

6.
Hyperstar polymers (HSPs) with hyperbranched aromatic polyester core and arms consisting of block copolymers of poly(methyl methacrylate) and poly(hydroxyethyl methacrylate) have been used as polymeric modifiers in cycloaliphatic epoxy‐anhydride formulations catalyzed with tertiary amines, with the purpose of enhancing the impact strength of the resulting materials without compromising other thermal and mechanical properties.> In this work, the effect of these polymeric modifiers on the curing kinetics, processing, thermal‐mechanical properties and thermal stability has been studied using thermal analysis techniques such as DSC, TMA, DMA, and TGA. The morphology of the cured materials has been analyzed with SEM. The curing kinetics has been analyzed by isoconversional procedures and phenomenological kinetic models taking into account the vitrification during curing, and the degradation kinetics has been analyzed by means of isoconversional procedures, summarizing the results in a time‐temperature‐transformation (TTT) diagram. The results show that HSPs participate in the crosslinking process due to the presence of reactive groups, without compromising significantly their thermal‐mechanical properties. The modified materials show a potential toughness enhancement produced by the formation of a nano‐grained morphology. The TTT diagram is shown to be a useful tool for the optimization of the curing schedule in terms of curing completion and safe processing window, as well as for defining storage stability conditions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1227–1242  相似文献   

7.
Epoxy resins are important thermosetting resins widely employed in industrial fields. Although the epoxy–imidazole curing system has attracted attention because of its reactivity, solidification of a liquid epoxy resin containing imidazoles proceeds gradually even at room temperature. This makes it difficult to use them for one‐component epoxy resin materials. Though powder‐type latent curing agents have been used for one‐component epoxy resin materials, they are difficult to apply for fabrication of fine industrial products due to their poor miscibility. To overcome this situation and to improve the shelf life of epoxy–imidazole compositions, we have developed a liquid‐type thermal latent curing agent 1 , generating an imidazole with a thermal trigger via a retro‐Michael addition reaction. The latent curing agent 1 has superior miscibility toward epoxy resins; in addition, it was confirmed that the epoxy resin composition has both high reactivity at 150 °C, and long‐term storage stability at room temperature. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2680–2688  相似文献   

8.
Three novel cardanol‐based phenalkamines with good stability have been successfully prepared by Mannich reaction using phenolic compounds with paraformaldehyde and hexamethylenediamine (or its mixture with other amines). The structure of the prepared phenalkamines has been analyzed using liquid chromatography‐mass spectrometry, nuclear magnetic resonance, and Fourier transform infrared spectroscopy. The curing kinetics of the prepared epoxy resin/phenalkamine systems has been investigated using differential scanning calorimetry (DSC), and determined by Kissinger, Flynn–Wall–Ozawa, and Crane methods. Furthermore, the thermal properties of the cured materials have been evaluated using DSC and thermogravimetric analysis, and the mechanical properties of the cured materials have been analyzed systematically. The results demonstrate that the phenalkamine 1 (PAA1) had a lower reactivity and better toughness than phenalkamine 2 (PAA2) and phenalkamine 3 (PAA3). In addition, PAA1 is a solid curing agent, while PAA2 and PAA3 are liquid curing agents, which were more convenient for practical usage. Results indicate that the properties of the prepared phenalkamines strongly depend on the structures. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 472–480  相似文献   

9.
In the past decades, 4‐phenylethynyl phthalic anhydride (4‐PEPA) has been the most important endcapper used for thermoset polyimide. As the isomer of4‐PEPA, 3‐phenylethynyl phthalic anhydride (3‐PEPA) has attracted our interest. In this article, 3‐PEPA was synthesized and a comparative study with 4‐PEPA on curing temperature, curing rate, thermal and mechanical properties of oligomers and cured polymers was presented. The new phenylethynyl endcapped model compound, N‐phenyl‐3‐phenylethynyl phthalimide, was synthesized and characterized. The molecular structure of model compound was determined via single‐crystal X‐ray diffraction and the thermal curing process was investigated by Fourier transform infrared. Differential scanning calorimetry clearly showed that the model compound from 3‐PEPA had about 20 °C higher curing onset and peak temperature than the 4‐PEPA analog. This result was further proved by the dynamic rheological analysis that the temperature of minimum viscosity for oligomers end‐capped with 3‐PEPA was above 20 °C higher than that of the corresponding 4‐PEPA endcapped oligomers with the same calculated number average molecular weight. The cured polymer from 3‐PEPA displayed slightly higher thermal oxidative stability than those from 4‐PEPA by thermogravimetric analysis. The thermal curing kinetics of 3‐PEPA endcapped oligomer (OI‐5) and 4‐PEPA endcapped oligomer (OI‐6) fitted a first‐order rate law quite well and revealed a similar rate acceleration trend. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4227–4235, 2008  相似文献   

10.
A novel cycloaliphatic triepoxide, 1,1‐bis(2′,3′‐epoxycyclohexyloxymethyl)‐3,4‐epoxycyclohexane ( II ), and its precursor, 1,1‐bis(2′‐cyclohexenyloxymethyl)‐3‐cyclohexene, were synthesized. Their chemical structures were confirmed with IR spectroscopy, elemental analysis, and 1H NMR spectroscopy. II was easily cured with hexahydro‐4‐methylphthalic anhydride with 1,3,5‐triethylhexahydro‐s‐triazine as a curing accelerator. The physical properties of the cured product were examined with thermomechanical analysis, thermogravimetric analysis, and dynamic mechanical analysis. Compared with the commercial diepoxide ERL‐4221 under the same curing conditions, the cured product based on II showed a much higher glass‐transition temperature (198 °C), a higher crosslinking density (2.08 × 10?3 mol/cm3), and a lower coefficient of thermal expansion [6.2 × 105(/°C)]. II may become a promising candidate material for modern microelectronic packaging. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2799–2804, 2001  相似文献   

11.
Several kinds of organic–inorganic hybrids were synthesized from an epoxy resin and a silane alkoxide with a primary amine‐type curing agent or tertiary amine curing catalyst. In the hybrid systems cured with the primary amine‐type curing agent, the storage modulus in the high‐temperature region increased, and the peak area of the tan δ curve decreased. Moreover, the mechanical properties were improved by the hybridization of small amounts of the silica network. However, these phenomena were not observed in the hybrid systems cured with the tertiary amine catalyst. The differences in the network structures of the hybrid materials with the different curing processes were characterized with Fourier transform infrared (FTIR). In the hybrid systems cured with the primary amine‐type curing agent, FTIR results showed the formation of a covalent bond between silanol and hydroxyl groups that were generated by the reaction of an epoxy group with an active hydrogen of the primary amine. However, this phenomenon was not observed in the hybrids cured with the tertiary amine. The hybrids with the primary amine showed a homogeneous microstructure in transmission electron microscopy observations, although the hybrids cured with the tertiary amine showed a heterogeneous structure. These results mean that the differences in the interactions between the organic and inorganic phases significantly affect the properties and microstructures of the resultant composites. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 1071–1084, 2001  相似文献   

12.
Tryptophan, an amino acid, has been used as a novel, environmentally friendly curing agent instead of toxic curing agents to crosslink the diglycidyl ether of bisphenol A (DGEBA) epoxy resin. The curing reaction of tryptophan/DGEBA mixtures of different ratios and the effect of the imidazole catalyst on the reaction have been evaluated. The optimum reaction ratio of DGEBA to tryptophan has been determined to be 3:1 with 1 wt % catalyst, and the curing mechanism of the novel reaction system has been studied and elucidated. In situ Fourier transform infrared spectra indicate that with the extraction of a hydrogen from NH3+ in zwitterions from tryptophan, the formed nucleophilic primary amine and carboxylate anions of the tryptophan can readily participate in the ring‐opening reaction with epoxy. The secondary amine, formed from the primary amine, can further participate in the ring‐opening reaction with epoxy and form the crosslinked network. The crosslinked structure exhibits a reasonably high glass‐transition temperature and thermal stability. A catalyst‐initiated chain reaction mechanism is proposed for the curing reaction of the epoxy with zwitterion amino acid hardeners. The replacement of toxic curing agents with this novel, environmentally friendly curing agent is an important step toward a next‐generation green electronics industry. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 181–190, 2007  相似文献   

13.
A methodology for preparing porous epoxy monolith via chemically induced phase separation was proposed. The starting system was a mixture of an epoxy precursor, diglycidyl ether of bisphenol‐A (DGEBA), a curing agent, 4,4′‐diaminodiphenylmethane (DDM), and a thermoplastic polymer, polypropylene carbonate (PPC). As DGEBA was cured with DDM, the system became phase‐separated having PPC particles dispersed in epoxy matrix. After PPC particles were removed by thermal degradation, a porous structure was obtained. The phase separation mechanism was determined by the initial composition and illustrated by a pseudophase diagram. The pore size increased with increasing the concentration of PPC and raising the curing temperature. The intermediate and final morphologies of the system were studied using optical and scanning electron microscopy, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

14.
Nano‐sized epoxy oligosiloxanes (EO) were prepared by condensation reaction between 3‐glycidoxypropyltrimethoxysilane (GPTS) and Diphenylsilandiol (DPSD). Through a composition change of GPTS and DPSD, EO of various structure and sizes were obtained. The molecular structure and size of EO synthesized were investigated by experimental measurements. Regardless of their composition, molecular structure of EO was linear or branch. The amount of species of high molecular weight and their molecular size increased with addition of DPSD. We confirmed that epoxy groups of EO were thermally cured using a thermal initiator and curing agent. Finally, we fabricated transparent epoxy‐based hybrimer films by thermal curing of EO resins. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 756–763, 2009  相似文献   

15.
The curing behavior of bisphenol‐A‐type epoxide oligomers (Ep) was evaluated by differential scanning calorimetry in the presence of S‐alkylsulfonium salts of dibenzothiophene, phenoxathiin, thianthrene, thioanisole, and tetrahydrothiophene as thermal latent initiators. These initiators dissolved homogeneously in Ep, except for 2,8‐dimethoxy‐5‐methyldibenzothiophenium tetrafluoroborate, and the curing reaction of the resulting mixtures occurred on heating, except for S‐methyltetrahydrothiophenium tetrafluoroborate. The initiation activity of these salts was controlled by the character of the substituents on the benzene ring, the leaving sulfide group, and the S‐alkyl group. Presumably, the electron density on the sulfide moieties and the stability of the carbocation released from the sulfonium salts affected the initiating temperature. A good correlation was obtained between the initiating temperature and the electron density of the sulfur atom of the corresponding sulfides, estimated from ab initio molecular orbital calculations in which the initiating temperature became higher as the electron density of the sulfur atom increased. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 868–871, 2001  相似文献   

16.
A novel phosphorus‐containing aralkyl novolac (Ar‐DOPO‐N) was prepared from the reaction of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) first with terephthaldicarboxaldehyde and subsequently with phenol. The chemical structures of the synthesized compounds were characterized with Fourier transform infrared, 1H and 31P NMR, and elemental analysis. Ar‐DOPO‐N blended with phenol formaldehyde novolac was used as a curing agent for o‐cresol formaldehyde novolac epoxy, resulting in cured epoxy resins with various phosphorus contents. The epoxy resins exhibited high glass‐transition temperatures (159–177 °C), good thermal stability (>320 °C), and retardation on thermal degradation rates. High char yields and high limited oxygen indices (26–32.5) were observed, indicating the resins' good flame retardance. Using a melamine‐modified phenol formaldehyde novolac to replace phenol formaldehyde novolac in the curing composition further enhanced the cured epoxy resins' glass‐transition temperatures (160–186 °C) and limited oxygen index values (28–33.5). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2329–2339, 2002  相似文献   

17.
A new class of thermosetting poly(2,6‐dimethyl‐1,4‐phenylene oxide)s containing pendant epoxide groups were synthesized and characterized. These new epoxy polymers were prepared through the bromination of poly(2,6‐dimethyl‐1,4‐phenylene oxide) in halogenated aromatic hydrocarbons followed by a Wittig reaction to yield vinyl‐substituted polymer derivatives. The treatment of the vinyl‐substituted polymers with m‐chloroperbenzoic acid led to the formation of epoxidized poly(2,6‐dimethyl‐1,4‐phenylene oxide) with variable pendant ratios, and the structures and properties were studied with nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and gel permeation chromatography. The ratios of pendant functional groups were tailored for the polymer properties, and the results showed that the glass‐transition temperatures increased as the benzylic protons were replaced by bromo‐, vinyl‐, or epoxide‐functional groups, whereas the thermal stability decreased in comparison with the original polymer. Within a molar fraction of 20–50%, the degree of functionalization had little effect on the glass‐transition temperature; however, it correlated inversely with the thermal stability of each functionalized polymer. The thermal curing behavior of the epoxide‐functionalized polymer was enhanced by the increment of the pendant functionality, which resulted in a significant increase in the glass‐transition temperature as well as the thermal stability after the curing reaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5875–5886, 2006  相似文献   

18.
Terpolymers bearing terpyridine as well as (meth)acrylates as free radical curable groups (UV‐curing) or hydroxyl groups (thermal curing with bis‐isocyanates) were synthesized and characterized using 1H NMR, IR and UV‐vis spectroscopy as well as GPC. Subsequently, the ability of covalent crosslinking via the UV‐initiated polymerization of the acrylate groups was investigated. Moreover, the thermal covalent crosslinking via the reaction of hydroxyl functionalized terpolymer and bis‐isocyanate compounds could be successfully achieved. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4028–4035, 2004  相似文献   

19.
This study reports the synthesis, curing, and optoelectronic properties of a solution‐processable, thermally cross‐linkable electron‐ and hole‐blocking material containing fluorene‐core and three periphery N‐phenyl‐N‐(4‐vinylphenyl)benzeneamine ( FTV ). The FTV exhibited good thermal stability with Td above 478 °C in nitrogen atmosphere. The FTV is readily cross‐linked via terminal vinyl groups by heating at 160 °C for 30 min to obtain homogeneous film with excellent solvent resistance. Multilayer PLED device [ITO/PEDOT:PSS/cured‐ FTV /MEH‐PPV/Ca (50 nm)/Al (100 nm)] was successfully fabricated using solution processed. Inserting cured‐ FTV is between PEDOT:PSS and MEH‐PPV results in simultaneous reduction in hole injection from PEDOT:PSS to MEH‐PPV and blocking in electron transport from MEH‐PPV to anode. The maximum luminance and maximum current efficiency were enhanced from 1810 and 0.27 to 4640 cd/m2 and 1.08 cd/A, respectively, after inserting cured‐ FTV layer. Current results demonstrate that the thermally cross‐linkable FTV enhances not only device efficiency but also film homogeneity after thermal curing. FTV is a promising electron‐ and hole‐blocking material applicable for the fabrication of multilayer PLEDs based on PPV derivatives. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 000: 000–000, 2012  相似文献   

20.
Phosphorus‐containing novolac–epoxy systems were prepared from novolac resins and isobutyl bis(glycidylpropylether) phosphine oxide (IHPOGly) as crosslinking agent. Their curing behavior was studied and the thermal, thermomechanical, and flame‐retardant properties of the cured materials were measured. The Tg and decomposition temperatures of the resulting thermosets are moderate and decrease when the phosphorous content increases. Whereas the phosphorous species decrease the thermal stability, at higher temperatures the degradation rates are lower than the degradation rate of the phosphorous‐free resin. V‐O materials were obtained when the resins were tested for ignition resistance with the UL‐94 test. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3516–3526, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号